Inter-organ communication and regulation of beta cell function
详细信息    查看全文
  • 作者:Mehboob A. Hussain ; Elina Akalestou ; Woo-jin Song
  • 关键词:Beta cell ; Decretin ; Galanin ; Ghrelin ; Incretin ; Insulin ; Inter ; organ ; Islet ; Leptin ; Muscarinic ; Review ; Xenin ; 25
  • 刊名:Diabetologia
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:59
  • 期:4
  • 页码:659-667
  • 全文大小:527 KB
  • 参考文献:1.Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF (1987) Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A 84:3434–3438CrossRef PubMed PubMedCentral
    2.Gefel D, Hendrick GK, Mojsov S, Habener J, Weir GC (1990) Glucagon-like peptide-I analogs: effects on insulin secretion and adenosine 3',5'-monophosphate formation. Endocrinology 126:2164–2168CrossRef PubMed
    3.Kieffer TJ, Habener JF (1999) The glucagon-like peptides. Endocr Rev 20:876–913CrossRef PubMed
    4.Mojsov S, Weir GC, Habener JF (1987) Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 79:616–619CrossRef PubMed PubMedCentral
    5.Brown JC (1974) Candidate hormones of the gut. 3. Gastric inhibitory polypeptide (GIP). Gastroenterology 67:733–734PubMed
    6.Brown JC, Cleator IG, Dryburgh JR, Pederson RA, Schubert H (1974) The physiology and pathophysiology of gastric inhibitory polypeptide (GIP) and motilin. Verh Dtsch Ges Inn Med 80:377–380PubMed
    7.Cataland S, Crockett SE, Brown JC, Mazzaferri EL (1974) Gastric inhibitory polypeptide (GIP) stimulation by oral glucose in man. J Clin Endocrinol Metab 39:223–228CrossRef PubMed
    8.Turner DS, Etheridge L, Jones J et al (1974) The effect of the intestinal polypeptides, IRP and GIP, on insulin release and glucose tolerance in the baboon. Clin Endocrinol (Oxf) 3:489–493CrossRef
    9.Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705CrossRef PubMed
    10.Guo S, Dai C, Guo M et al (2013) Inactivation of specific beta cell transcription factors in type 2 diabetes. J Clin Invest 123:3305–3316CrossRef PubMed PubMedCentral
    11.Smith EP, An Z, Wagner C et al (2014) The role of beta cell glucagon-like peptide-1 signaling in glucose regulation and response to diabetes drugs. Cell Metab 19:1050–1057CrossRef PubMed PubMedCentral
    12.Svendsen B, Pedersen J, Albrechtsen NJ et al (2015) An analysis of cosecretion and coexpression of gut hormones from male rat proximal and distal small intestine. Endocrinology 156:847–857CrossRef PubMed
    13.Wice BM, Wang S, Crimmins DL et al (2010) Xenin-25 potentiates glucose-dependent insulinotropic polypeptide action via a novel cholinergic relay mechanism. J Biol Chem 285:19842–19853CrossRef PubMed PubMedCentral
    14.Zhang S, Hyrc K, Wang S, Wice BM (2012) Xenin-25 increases cytosolic free calcium levels and acetylcholine release from a subset of myenteric neurons. Am J Physiol Gastrointest Liver Physiol 303:G1347–G1355CrossRef PubMed PubMedCentral
    15.Chowdhury S, Reeds DN, Crimmins DL et al (2014) Xenin-25 delays gastric emptying and reduces postprandial glucose levels in humans with and without type 2 diabetes. Am J Physiol Gastrointest Liver Physiol 306:G301–G309CrossRef PubMed PubMedCentral
    16.Nasteska D, Harada N, Suzuki K et al (2014) Chronic reduction of GIP secretion alleviates obesity and insulin resistance under high-fat diet conditions. Diabetes 63:2332–2343CrossRef PubMed
    17.Campbell JE, Ussher JR, Mulvihill EE et al (2016) TCF1 links GIPR signaling to the control of beta cell function and survival. Nat Med 22:84–90CrossRef PubMed
    18.Lilavivathana U, Campbell RG, Brodows RG (1978) Control of insulin secretion during fasting in man. Metabolism 27:815–821CrossRef PubMed
    19.Alfa RW, Park S, Skelly KR et al (2015) Suppression of insulin production and secretion by a decretin hormone. Cell Metab 21:323–333CrossRef PubMed PubMedCentral
    20.Prado CL, Pugh-Bernard AE, Elghazi L, Sosa-Pineda B, Sussel L (2004) Ghrelin cells replace insulin-producing beta cells in two mouse models of pancreas development. Proc Natl Acad Sci U S A 101:2924–2929CrossRef PubMed PubMedCentral
    21.Wierup N, Svensson H, Mulder H, Sundler F (2002) The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas. Regul Pept 107:63–69CrossRef PubMed
    22.Wierup N, Yang S, McEvilly RJ, Mulder H, Sundler F (2004) Ghrelin is expressed in a novel endocrine cell type in developing rat islets and inhibits insulin secretion from INS-1 (832/13) cells. J Histochem Cytochem 52(3):301–310CrossRef PubMed
    23.Gardiner J, Bloom S (2008) Ghrelin gets its GOAT. Cell Metab 7:193–194CrossRef PubMed
    24.Li RL, Sherbet DP, Elsbernd BL, Goldstein JL, Brown MS, Zhao TJ (2012) Profound hypoglycemia in starved, ghrelin-deficient mice is caused by decreased gluconeogenesis and reversed by lactate or fatty acids. J Biol Chem 287:17942–17950CrossRef PubMed PubMedCentral
    25.McFarlane MR, Brown MS, Goldstein JL, Zhao TJ (2014) Induced ablation of ghrelin cells in adult mice does not decrease food intake, body weight, or response to high-fat diet. Cell Metab 20:54–60CrossRef PubMed PubMedCentral
    26.Barnett BP, Hwang Y, Taylor MS et al (2010) Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor. Science 330:1689–1692CrossRef PubMed PubMedCentral
    27.Tang G, Wang Y, Park S et al (2012) Go2 G protein mediates galanin inhibitory effects on insulin release from pancreatic beta cells. Proc Natl Acad Sci U S A 109:2636–2641CrossRef PubMed PubMedCentral
    28.Wang Y, Park S, Bajpayee NS, Nagaoka Y, Boulay G, Birnbaumer L, Jiang M (2011) Augmented glucose-induced insulin release in mice lacking G(o2), but not Go1 or Gi proteins. Proc Natl Acad Sci U S A 108:1693–1698CrossRef PubMed PubMedCentral
    29.Hussain MA, Song WJ, Wolfe A (2015) There is Kisspeptin—and there is Kisspeptin. Trends Endocrinol Metab 26:564–572CrossRef PubMed
    30.Song WJ, Mondal P, Wolfe A et al (2014) Glucagon regulates hepatic kisspeptin to impair insulin secretion. Cell Metab 19:667–681CrossRef PubMed PubMedCentral
    31.Kieffer TJ, Habener JF (2000) The adipoinsular axis: effects of leptin on pancreatic beta-cells. Am J Physiol Endocrinol Metab 278:E1–E14PubMed
    32.Kieffer TJ, Heller RS, Habener JF (1996) Leptin receptors expressed on pancreatic beta-cells. Biochem Biophys Res Commun 224:522–527CrossRef PubMed
    33.Kieffer TJ, Heller RS, Leech CA, Holz GG, Habener JF (1997) Leptin suppression of insulin secretion by the activation of ATP-sensitive K+ channels in pancreatic beta-cells. Diabetes 46:1087–1093CrossRef PubMed PubMedCentral
    34.Morioka T, Asilmaz E, Hu J et al (2007) Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice. J Clin Invest 117:2860–2868CrossRef PubMed PubMedCentral
    35.Seufert J, Kieffer TJ, Habener JF (1999) Leptin inhibits insulin gene transcription and reverses hyperinsulinemia in leptin-deficient ob/ob mice. Proc Natl Acad Sci U S A 96:674–679CrossRef PubMed PubMedCentral
    36.Seufert J, Kieffer TJ, Leech CA et al (1999) Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. J Clin Endocrinol Metab 84:670–676PubMed PubMedCentral
    37.Soedling H, Hodson DJ, Andrianssens AE et al (2015) Limited impact on glucose homeostasis of leptin receptor deletion from insulin- or proglucagon-expressing cells. Mol Metab 4:619–630CrossRef PubMed PubMedCentral
    38.Ye R, Holland WL, Gordillo R et al (2014) Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes beta-cell regeneration. Elife 3:e03851PubMedCentral
    39.Ye R, Wang M, Wang QA, Scherer PE (2015) Adiponectin-mediated antilipotoxic effects in regenerating pancreatic islets. Endocrinology 156:2019–2028CrossRef PubMed
    40.Cantley J (2014) The control of insulin secretion by adipokines: current evidence for adipocyte–beta cell endocrine signalling in metabolic homeostasis. Mamm Genome 25:442–454CrossRef PubMed
    41.Wei J, Karsenty G (2015) An overview of the metabolic functions of osteocalcin. Rev Endocr Metab Disord 16:93–98CrossRef PubMed
    42.Oury F, Ferron M, Huizhen W et al (2013) Osteocalcin regulates murine and human fertility through a pancreas–bone–testis axis. J Clin Invest 123:2421–2433CrossRef PubMed PubMedCentral
    43.Oury F, Sumara G, Sumara O et al (2011) Endocrine regulation of male fertility by the skeleton. Cell 144:796–809CrossRef PubMed PubMedCentral
    44.Clemens TL, Karsenty G (2011) The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res 26:677–680CrossRef PubMed
    45.Ferron M, Wei J, Yoshizawa T et al (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308CrossRef PubMed PubMedCentral
    46.Lee NK, Sowa H, Hinoi E et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469CrossRef PubMed PubMedCentral
    47.Wei J, Hanna T, Suda N, Karsenty G, Ducy P (2014) Osteocalcin promotes beta-cell proliferation during development and adulthood through Gprc6a. Diabetes 63:1021–1031CrossRef PubMed PubMedCentral
    48.Fulzele K, Riddle RC, DiGirolamo DJ et al (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142:309–319CrossRef PubMed PubMedCentral
    49.Wei J, Ferron M, Clarke CJ et al (2014) Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 124:1–13CrossRef PubMed
    50.Abdallah BM, Ditzel N, Laborda J, Karsenty G, Kassem M (2015) DLK1 regulates whole-body glucose metabolism: a negative feedback regulation of the osteocalcin–insulin loop. Diabetes 64:3069–3080CrossRef PubMed
    51.Ducy P, Amling M, Takeda S et al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207CrossRef PubMed
    52.Takeda S, Elefteriou F, Levasseur R et al (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317CrossRef PubMed
    53.Bartell SM, Rayalam S, Ambati S et al (2011) Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice. J Bone Miner Res 26:1710–1720CrossRef PubMed
    54.Kajimura D, Lee HW, Riley KJ et al (2013) Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab 17:901–915CrossRef PubMed PubMedCentral
    55.Kondegowda NG, Fenutria R, Pollack IR et al (2015) Osteoprotegerin and denosumab stimulate human beta cell proliferation through inhibition of the receptor activator of nf-kappab ligand pathway. Cell Metab 22:77–85CrossRef PubMed
    56.Ellingsgaard H, Hauselmann I, Schuler B et al (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17:1481–1489CrossRef PubMed PubMedCentral
    57.Bouzakri K, Plomgaard P, Berney T, Donath MY, Pedersen BK, Halban PA (2011) Bimodal effect on pancreatic beta-cells of secretory products from normal or insulin-resistant human skeletal muscle. Diabetes 60:1111–1121CrossRef PubMed PubMedCentral
    58.Hanchang W, Semprasert N, Limjindaporn T, Yenchitsomanus PT, Kooptiwut S (2013) Testosterone protects against glucotoxicity-induced apoptosis of pancreatic beta-cells (INS-1) and male mouse pancreatic islets. Endocrinology 154:4058–4067CrossRef PubMed
    59.Kooptiwut S, Hanchang W, Semprasert N, Junking M, Limjindaporn T, Yenchitsomanus PT (2015) Testosterone reduces AGTR1 expression to prevent beta-cell and islet apoptosis from glucotoxicity. J Endocrinol 224:215–224CrossRef PubMed
    60.Le May C, Chu K, Hu M et al (2006) Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci U S A 103:9232–9237CrossRef PubMed PubMedCentral
    61.Alonso-Magdalena P, Ropero AB, Carrera MP et al (2008) Pancreatic insulin content regulation by the estrogen receptor ER alpha. PLoS One 3:e2069CrossRef PubMed PubMedCentral
    62.Kilic G, Alvarez-Mercado AI, Zarrouki B et al (2014) The islet estrogen receptor-alpha is induced by hyperglycemia and protects against oxidative stress-induced insulin-deficient diabetes. PLoS One 9:e87941CrossRef PubMed PubMedCentral
    63.Liu S, Le May C, Wong WP et al (2009) Importance of extranuclear estrogen receptor-alpha and membrane G protein-coupled estrogen receptor in pancreatic islet survival. Diabetes 58:2292–2302CrossRef PubMed PubMedCentral
    64.Liu S, Mauvais-Jarvis F (2009) Rapid, nongenomic estrogen actions protect pancreatic islet survival. Islets 1:273–275CrossRef PubMed PubMedCentral
    65.Tiano JP, Delghingaro-Augusto V, Le May C et al (2011) Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents beta cell failure in rodent models of type 2 diabetes. J Clin Invest 121:3331–3342CrossRef PubMed PubMedCentral
    66.Wong WP, Tiano JP, Liu S et al (2010) Extranuclear estrogen receptor-alpha stimulates NeuroD1 binding to the insulin promoter and favors insulin synthesis. Proc Natl Acad Sci U S A 107:13057–13062CrossRef PubMed PubMedCentral
    67.Navarro G, Allard C, Xu W, Mauvais-Jarvis F (2015) The role of androgens in metabolism, obesity, and diabetes in males and females. Obesity (Silver Spring) 23:713–719CrossRef
    68.Kim H, Toyofuku Y, Lynn FC et al (2010) Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med 16:804–808CrossRef PubMed PubMedCentral
    69.Kim K, Oh CM, Ohara-Imaizumi M et al (2015) Functional role of serotonin in insulin secretion in a diet-induced insulin-resistant state. Endocrinology 156:444–452CrossRef PubMed PubMedCentral
    70.Logie JJ, Denison FC, Riley SC et al (2012) Evaluation of kisspeptin levels in obese pregnancy as a biomarker for pre-eclampsia. Clin Endocrinol (Oxf) 76:887–893CrossRef
    71.Ahren B (2000) Autonomic regulation of islet hormone secretion—implications for health and disease. Diabetologia 43:393–410CrossRef PubMed
    72.Edvell A, Lindstrom P (1998) Vagotomy in young obese hyperglycemic mice: effects on syndrome development and islet proliferation. Am J Physiol 274:E1034–E1039PubMed
    73.Lausier J, Diaz WC, Roskens V et al (2010) Vagal control of pancreatic ss-cell proliferation. Am J Physiol Endocrinol Metab 299:E786–E793CrossRef PubMed PubMedCentral
    74.Kiba T (2004) Relationships between the autonomic nervous system and the pancreas including regulation of regeneration and apoptosis: recent developments. Pancreas 29:e51–e58CrossRef PubMed
    75.Kiba T, Tanaka K, Numata K, Hoshino M, Misugi K, Inoue S (1996) Ventromedial hypothalamic lesion-induced vagal hyperactivity stimulates rat pancreatic cell proliferation. Gastroenterology 110:885–893CrossRef PubMed
    76.Rodriguez-Diaz R, Abdulreda MH, Formoso AL et al (2011) Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab 14:45–54CrossRef PubMed PubMedCentral
    77.Rodriguez-Diaz R, Dando R, Jacques-Silva MC et al (2011) Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat Med 17:888–892CrossRef PubMed PubMedCentral
    78.Gilon P, Henquin JC (2001) Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev 22:565–604PubMed
    79.Satin LS, Kinard TA (1998) Neurotransmitters and their receptors in the islets of Langerhans of the pancreas: what messages do acetylcholine, glutamate, and GABA transmit? Endocrine 8:213–223CrossRef PubMed
    80.Duttaroy A, Zimliki CL, Gautam D, Cui Y, Mears D, Wess J (2004) Muscarinic stimulation of pancreatic insulin and glucagon release is abolished in m3 muscarinic acetylcholine receptor-deficient mice. Diabetes 53:1714–1720CrossRef PubMed
    81.Gautam D, Han SJ, Hamdan FF et al (2006) A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab 3:449–461CrossRef PubMed
    82.Guettier JM, Gautam D, Scarselli M et al (2009) A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc Natl Acad Sci U S A 106:19197–19202CrossRef PubMed PubMedCentral
    83.Shi X, Zhou F, Li X et al (2013) Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons. Cell Metab 18:86–98CrossRef PubMed PubMedCentral
    84.Liu C, Lee S, Elmquist JK (2014) Circuits controlling energy balance and mood: inherently intertwined or just complicated intersections? Cell Metab 19:902–909CrossRef PubMed PubMedCentral
    85.Ahren B, Ericson LE, Lundquist I, Loren I, Sundler F (1981) Adrenergic innervation of pancreatic islets and modulation of insulin secretion by the sympatho-adrenal system. Cell Tissue Res 216:15–30CrossRef PubMed
    86.Borden P, Houtz J, Leach SD, Kuruvilla R (2013) Sympathetic innervation during development is necessary for pancreatic islet architecture and functional maturation. Cell Rep 4:287–301CrossRef PubMed PubMedCentral
    87.Tan Z, Fogel R, Jiang C, Zhang X (2004) Galanin inhibits gut-related vagal neurons in rats. J Neurophysiol 91:2330–2343CrossRef PubMed
  • 作者单位:Mehboob A. Hussain (1) (2) (3)
    Elina Akalestou (2)
    Woo-jin Song (2)

    1. Department of Medicine, Johns Hopkins University, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD, 21287, USA
    2. Department of Pediatrics, Johns Hopkins University, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD, 21287, USA
    3. Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Internal Medicine
    Metabolic Diseases
    Human Physiology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0428
文摘
The physiologically predominant signal for pancreatic beta cells to secrete insulin is glucose. While circulating glucose levels and beta cell glucose metabolism regulate the amount of released insulin, additional signals emanating from other tissues and from neighbouring islet endocrine cells modulate beta cell function. To this end, each individual beta cell can be viewed as a sensor of a multitude of stimuli that are integrated to determine the extent of glucose-dependent insulin release. This review discusses recent advances in our understanding of inter-organ communications that regulate beta cell insulin release in response to elevated glucose levels.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.