Phenylethynylene-substituted poly(triphenylamine vinylene): Post-modification synthesis and (spectro)electrochemical properties
详细信息    查看全文
  • 作者:Loredana Vacareanu ; Teofilia Virag (Ivan) ; Mircea Grigoras
  • 关键词:poly(triphenylamine vinylene)s ; UV ; vis spectroscopy ; cyclic voltammetry ; spectroelectrochemical behaviour
  • 刊名:Macromolecular Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:24
  • 期:3
  • 页码:249-260
  • 全文大小:929 KB
  • 参考文献:(1).B. Minaev, G. Baryshnikov, and H. Agren, Phys. Chem. Chem. Phys., 16, 1719 (2014).CrossRef
    (2).M. Mondragón, J. U. Balderas, L. G. Jimenez, M. E. Sánchez-Espíndola, and C. Falcony, Org. Electron., 15, 2993 (2014).CrossRef
    (3).J. M. Hales, S. Barlow, H. Kim, S. Mukhopadhyay, J. L. Brédas, J. W. Perry, and S. R. Marder, Chem. Mater., 26, 549 (2014).CrossRef
    (4).M. M. Murray, A. B. Holmes, Semiconducting Polymers: Chemistry, Physics and Engineering, G. Hadziinoannou and P. F. van Hutten, Eds., Wiley, VCH Weiheim, 2000.
    (5).S. K. Yook and Y. Y. Lee, Synth. Met., 162, 1594 (2012).CrossRef
    (6).J. A. Mikroyannidis, M. M. Stylianakis, P. Suresh, and G. D. Sharma, Sol. Energy Mater. Sol. Cells, 93, 1792 (2009).CrossRef
    (7).J. Kwak, W. Z. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S. W. Kang, S. Weber, H. J. Butt, R. Zentel, S. Lee, K. Char, and C. Lee, Adv. Mater., 21, 5022 (2009).CrossRef
    (8).M. Behl, E. Hattemer, M. Brehmer, and R. Zentel, Macromol. Chem. Phys., 203, 503 (2002).CrossRef
    (9).B. S. Kim, S. H. Yoo, O. Dongkenn, C. S. Wook, C. D. Soo, C. E. Lee, and Y. I. Yin, Synth. Met., 145, 229 (2004).CrossRef
    (10).H. J. Snaith, G. L. Whiting, B. Sun, N. C. Greenham, W. T. S. Huck, and R. H. Friend, Nano Lett., 5, 1653 (2005).CrossRef
    (11).Y. J. Shirota, Mater. Chem., 15, 75 (2005).CrossRef
    (12).M. Sommer, S. M. Lindner, and M. Thelakkat, Adv. Funct. Mater., 17, 1493 (2007).CrossRef
    (13).K. Y. Law, Chem. Rev., 93, 449 (1993).CrossRef
    (14).R. H. Baughman, J. L. Bredas, R. R. Chance, R. L. Elsenbaumer, and L. W. Shacklette, Chem. Rev., 82, 209 (1982).CrossRef
    (15).T. Yamamoto, M. Takagi, K. Kizu, T. Maruyama, K. Kubota, H. Kanbara, T. Kurihara, and T. Kaino, J. Chem. Soc. Chem. Commun., 9, 797 (1993).CrossRef
    (16).A. P. Davey, S. Elliott, O. Óconnor, and W. Blau, J. Chem. Soc. Chem. Commun., 14, 1433 (1995).CrossRef
    (17).K. P. Akshaya, P. M. Sandra, K. Amit, S. Ritu, N. Modeeparamil, and P. Manorajan, J. Polym. Sci., Part A: Polym. Chem., 49, 832 (2011).
    (18).T. Ivan, L. Vacareanu, and M. Grigoras, Int. J. Polym. Mater., 62, 270 (2013).CrossRef
    (19).Y.-H. Kim, J.-C. Park, H.-J. Kang, J.-W. Park, H.-S. Kim, J. H. Kim, and S.-K. Kwon, Macromol. Res., 13, 403 (2005).CrossRef
    (20).T. Ivan, L. Vacareanu, and M. Grigoras, Macromol. Res., 21, 1059 (2013).CrossRef
    (21).P. Strohriegl and J. V. Grazulevicius, Adv. Mater., 14, 1439 (2002).CrossRef
    (22).C. Ego, A.C. Grimsdale, F. Uckert, G. Yu, G. Srdanov, and K. Müllen, Adv. Mater., 14, 809 (2002).CrossRef
    (23).F. I. Wu, P. I. Shih, C. F Shu, Y. L. Tung, and Y. Chi, Macromolecules, 38, 9028 (2005).CrossRef
    (24).F. S. Linang, Y. J. Pu, T. Kurata, J. Kido, and H. Nishide, Polymer, 46, 3767 (2005).CrossRef
    (25).M. Grigoras and L. Stafie, Des. Monomers Polym., 12, 177 (2009).CrossRef
    (26).Z. Xia, J. He, P. Peng, Y. Zhou, Y. Li, and W. Tian, Tetrahedron Lett., 48, 5877 (2007).CrossRef
    (27).H. L. Jeong, S. Jiwon, J. Hwang, S.Y. Park, C. Haeyoung, and C. Myoungsik, Chem. Mater., 16, 456 (2004).CrossRef
    (28).G. Lai, R. X. Bu, J. Santos, and E. A. Mintz, Synlett, 1997, 1275 (1997).CrossRef
    (29).X. Haijian, H. Jiating, X. Bin, W. Shanpeng, L. Yaowen, and T. Wenjing, Tetrahedron, 64, 5736 (2008).CrossRef
    (30).L. Vacareanu and M. Grigoras, J. Appl. Electrochem., 40, 1969 (2010).CrossRef
    (31).T. Mallegol, S. Gmouth, A. A. Meziane, D. Blanchard, and O. Mongin, Synthesis, 11, 1771 (2005).
    (32).T. Ivan, L. Vacareanu, and M. Grigoras, Des. Monomers Polym., 17, 156 (2013).CrossRef
    (33).Y. J., Wang, H. S. Sheu, and C. K. Lai, Tetrahedron, 63, 1695 (2007).CrossRef
    (34).Y. Li, Y. Cao, J. Gao, D. Wang, G. Yu, and A. Heeger, Synth. Met., 99, 243 (1999).CrossRef
    (35).Z. A. Tan, E. Zhou, Y. Yang, Y. He, C. Yang, and Y. Li, Eur. Polym. J., 43, 855 (2007).CrossRef
    (36).T. Lana-Villarreal, J. M. Campin, N. Guijarro, and R. Gómez, Phys. Chem. Chem. Phys., 13, 4013 (2011).CrossRef
    (37).O. Yurchenko, D. Freytag, L. Borg, R. Zentel, J. Heinze, and S. Lidwings, J. Phys. Chem. B, 116, 30 (2012).CrossRef
    (38).J. F. Ambrose, L. L. Carpenter, and R. F. Nelson, Electrochem. Soc., 122, 876 (1975).CrossRef
  • 作者单位:Loredana Vacareanu (1)
    Teofilia Virag (Ivan) (1)
    Mircea Grigoras (1)

    1. “P. Poni” Institute of Macromolecular Chemistry, Electroactive Polymers Department, 41A Gr. Ghica Voda Alley, 700487, Iasi, Romania
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Polymer Sciences
    Characterization and Evaluation of Materials
    Soft and Granular Matter, Complex Fluids and Microfluidics
    Nanochemistry
    Nanotec
  • 出版者:The Polymer Society of Korea, co-published with Springer
  • ISSN:2092-7673
文摘
Phenylethynylene-substituted poly(triphenylamine vinylene) were synthesised in two steps by Wittig polycondensation reaction between 4,4'-diformyl-triphenylamine and bis(4-formyl phenyl)-N,N'-iodo-phenylamine in the presence of a phosphonium salt. The iodine-substituted poly(triphenylamine vinylene) were subsequently subjected to coupling reactions with phenylacetylene obtaining conjugated new structures and properties. The structures were confirmed by C13 and 1H nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) spectroscopy. The attachment of phenylethynyl substituent to the backbone of the polymers influences the optical and electrochemical properties which were analysed by ultraviolet-visible (UV-Vis) and fluorescence spectroscopy. Having triphenylamine units along the backbone, the obtained polymers exhibit electrochemical activity and their redox characteristics were investigated by running cyclic voltammetry for polymer films deposited on working electrode surface. The electrochemical data were used to estimate their highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels and the band gap energy values (Eg). The polymers films change their colour while the potential is swept on the positive anodic domain, and this may be due to various oxidation states that undergo the polymers. The in situ UV-Vis vs. applied potential spectra were also recorded.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.