Increased 3-Hydroxykynurenine serum concentrations differentiate Alzheimer’s disease patients from controls
详细信息    查看全文
  • 作者:Markus J. Schwarz (1)
    Gilles J. Guillemin (2)
    Stefan J. Teipel (3)
    Katharina Buerger (4)
    Harald Hampel (5)
  • 关键词:Alzheimer’s disease ; Biomarker ; Kynurenine pathway ; 3 ; Hydroxykynurenine ; Tryptophan ; Neurodegeneration
  • 刊名:European Archives of Psychiatry and Clinical Neuroscience
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:263
  • 期:4
  • 页码:345-352
  • 全文大小:276KB
  • 参考文献:1. Albin RL, Greenamyre JT (1992) Alternative excitotoxic hypotheses. Neurology 42:733-38 CrossRef
    2. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. Text Revision. American Psychiatric Association, Washington, DC
    3. Baran H, Jellinger K, Deecke L (1999) Kynurenine metabolism in Alzheimer’s disease. J Neural Transm 106:165-81 CrossRef
    4. Bell C, Abrams J, Nutt D (2001) Tryptophan depletion and its implications for psychiatry. Br J Psychiatry 178:399-05 CrossRef
    5. Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6(3):131-44
    6. Bonda DJ, Mailankot M, Stone JG, Garrett MR, Staniszewska M, Castellani RJ, Siedlak SL, Zhu X, Lee HG, Perry G, Nagaraj RH, Smith MA (2010) Indoleamine 2,3-dioxygenase and 3-hydroxykynurenine modifications are found in the neuropathology of Alzheimer’s disease. Redox Rep 15:161-68 CrossRef
    7. Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ (2009) Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res 16:77-6 CrossRef
    8. Buerger K, Zinkowski R, Teipel SJ, Tapiola T, Arai H, Blennow K, Andreasen N, Hofmann-Kiefer K, DeBernardis J, Kerkman D, McCulloch C, Kohnken R, Padberg F, Pirttila T, Schapiro MB, Rapoport SI, Moller HJ, Davies P, Hampel H (2002) Differential diagnosis of Alzheimer disease with cerebrospinal fluid levels of tau protein phosphorylated at threonine 231. Arch Neurol 59:1267-272 CrossRef
    9. Chiarugi A, Calvani M, Meli E, Traggiai E, Moroni F (2001) Synthesis and release of neurotoxic kynurenine metabolites by human monocyte-derived macrophages. J Neuroimmunol 120:190-98 CrossRef
    10. Chiarugi A, Meli E, Moroni F (2001) Similarities and differences in the neuronal death processes activated by 3OH-kynurenine and quinolinic acid. J Neurochem 77:1310-318 CrossRef
    11. Choi DW (1992) Excitotoxic cell death. J Neurobiol 23:1261-276 CrossRef
    12. Cozzi A, Carpenedo R, Moroni F (1999) Kynurenine hydroxylase inhibitors reduce ischemic brain damage: studies with (m-nitrobenzoyl)-alanine (mNBA) and 3,4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzenesulfonamide (Ro 61-048) in models of focal or global brain ischemia. J Cereb Blood Flow Metab 19:771-77 CrossRef
    13. Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351:56-7 CrossRef
    14. Dal Forno G, Palermo MT, Donohue JE, Karagiozis H, Zonderman AB, Kawas CH (2005) Depressive symptoms, sex, and risk for Alzheimer’s disease. Ann Neurol 57:381-87 CrossRef
    15. de Carvalho LP, Bochet P, Rossier J (1996) The endogenous agonist quinolinic acid and the non endogenous homoquinolinic acid discriminate between NMDAR2 receptor subunits. Neurochem Int 28:445-52 CrossRef
    16. Eastman CL, Guilarte TR (1989) Cytotoxicity of 3-hydroxykynurenine in a neuronal hybrid cell line. Brain Res 495:225-31 CrossRef
    17. Edwards SR, Mather LE (2003) Diclofenac increases the accumulation of kynurenate following tryptophan pretreatment in the rat: a possible factor contributing to its antihyperalgesic effect. Inflammopharmacology 11:277-92 CrossRef
    18. Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56:2007-017 CrossRef
    19. Giorgini F, Guidetti P, Nguyen Q, Bennett SC, Muchowski PJ (2005) A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet 37:526-31 CrossRef
    20. Goldstein LE, Leopold MC, Huang X, Atwood CS, Saunders AJ, Hartshorn M, Lim JT, Faget KY, Muffat JA, Scarpa RC, Chylack LT Jr, Bowden EF, Tanzi RE, Bush AI (2000) 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote alpha-crystallin cross-linking by metal ion reduction. Biochemistry 39:7266-275 CrossRef
    21. Guidetti P, Luthi-Carter RE, Augood SJ, Schwarcz R (2004) Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiol Dis 17:455-61 CrossRef
    22. Guidetti P, Schwarcz R (1999) 3-Hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum. Eur J Neurosci 11:3857-863 CrossRef
    23. Guillemin GJ (2012) Quinolinic acid, the inescapable neurotoxin. FEBS J 279(8):1356-365
    24. Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 78:1-3
    25. Guillemin GJ, Smith DG, Smythe GA, Armati PJ, Brew BJ (2003a) Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv Exp Med Biol 527:105-12
    26. Guillemin GJ, Smythe GA, Veas LA, Takikawa O, Brew BJ (2003b) A beta 1-2 induces production of quinolinic acid by human macrophages and microglia. Neuroreport 14:2311-315
    27. Guillemin GJ, Brew BJ, Noonan CE, Takikawa O, Cullen KM (2005a) Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol Appl Neurobiol 31(4):395-04 CrossRef
    28. Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005b) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49(1):15-3
    29. Guillemin GJ, Wang L, Brew BJ (2005c) Quinolinic acid selectively induces apoptosis of human astrocytes: potential role in AIDS dementia complex. J Neuroinflammation 2:16
    30. Guillemin GJ, Brew BJ, Noonan CE, Knight TG, Smythe GA, Cullen KM (2007a) Mass spectrometric detection of quinolinic acid in microdissected Alzheimer's disease plaques. In: Takai K (ed) International Congress Series. pp 404-08
    31. Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, Takikawa O, Brew BJ (2007b) Characterization of the kynurenine pathway in human neurons. J Neurosci 27(47):12884-2892
    32. Gulaj E, Pawlak K, Bien B, Pawlak D (2010) Kynurenine and its metabolites in Alzheimer’s disease patients. Adv Med Sci 55:204-11 CrossRef
    33. Hartai Z, Juhasz A, Rimanoczy A, Janaky T, Donko T, Dux L, Penke B, Toth GK, Janka Z, Kalman J (2007) Decreased serum and red blood cell kynurenic acid levels in Alzheimer’s disease. Neurochem Int 50:308-13 CrossRef
    34. Heyes MP, Chen CY, Major EO, Saito K (1997) Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Biochem J 326:351-56
    35. Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463-473
    36. Hynd MR, Scott HL, Dodd PR (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45:583-95 CrossRef
    37. Kessler M, Terramani T, Lynch G, Baudry M (1989) A glycine site associated with N-methyl-d -aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52:1319-328 CrossRef
    38. Koh JY, Choi DW (1991) Selective blockade of non-NMDA receptors does not block rapidly triggered glutamate-induced neuronal death. Brain Res 548:318-21 CrossRef
    39. Kwidzinski E, Bunse J, Aktas O, Richter D, Mutlu L, Zipp F, Nitsch R, Bechmann I (2005) Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. FASEB J 19:1347-349
    40. McGeer EG, McGeer PL (2003) Inflammatory processes in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 27:741-49 CrossRef
    41. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939-44 CrossRef
    42. Myint AM, Kim YK, Verkerk R, Scharpe S, Steinbusch H, Leonard B (2007) Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 98:143-51 CrossRef
    43. Okuda S, Nishiyama N, Saito H, Katsuki H (1998) 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J Neurochem 70:299-07 CrossRef
    44. Palmer AM (1996) Neurochemical studies of Alzheimer’s disease. Neurodegeneration 5:381-91 CrossRef
    45. Rahman A, Ting K, Cullen KM, Braidy N, Brew BJ, Guillemin GJ (2009) The excitotoxin quinolinic acid induces tau phosphorylation in human neurons. PLoS ONE 4:e6344 CrossRef
    46. Schiepers OJ, Wichers MC, Maes M (2005) Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry 29:201-17 CrossRef
    47. Schneider P, Hampel H, Buerger K (2009) Biological marker candidates of Alzheimer’s disease in blood, plasma, and serum. CNS Neurosci Ther 15:358-74 CrossRef
    48. Schubert P, Ogata T, Marchini C, Ferroni S (2001) Glia-related pathomechanisms in Alzheimer’s disease: a therapeutic target? Mech Ageing Dev 123:47-7 CrossRef
    49. Schwarcz R (2004) The kynurenine pathway of tryptophan degradation as a drug target. Curr Opin Pharmacol 4:12-7 CrossRef
    50. Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1-0 CrossRef
    51. Smythe GA, Braga O, Brew BJ, Grant RS, Guillemin GJ, Kerr SJ, Walker DW (2002) Concurrent quantification of quinolinic, picolinic, and nicotinic acids using electron-capture negative-ion gas chromatography–mass spectrometry. Anal Biochem 301(1):21-6
    52. The Ronald and Nancy Reagan Research Institute of the Alzheimer’s Association and the National Institute on Aging Working Group (1998) Consensus report of the Working Group on: “Molecular and Biochemical Markers of Alzheimer’s Disease- The Ronald and Nancy Reagan Research Institute of the Alzheimer’s Association and the National Institute on Aging Working Group. Neurobiol Aging 19:109-16 CrossRef
    53. Ting KK, Brew BJ, Guillemin GJ (2009) Effect of quinolinic acid on human astrocytes morphology and functions: implications in Alzheimer’s disease. J Neuroinflamm 6:36 CrossRef
    54. Welsh KA, Butters N, Mohs RC, Beekly D, Edland S, Fillenbaum G, Heyman A (1994) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part V. A normative study of the neuropsychological battery. Neurology 44:609-14 CrossRef
    55. Whetsell WO Jr, Shapira NA (1993) Neuroexcitation, excitotoxicity and human neurological disease. Lab Invest 68:372-87
    56. Zwilling D, Huang SY, Sathyasaikumar KV, Notarangelo FM, Guidetti P, Wu HQ, Lee J, Truong J, Andrews-Zwilling Y, Hsieh EW, Louie JY, Wu T, Scearce-Levie K, Patrick C, Adame A, Giorgini F, Moussaoui S, Laue G, Rassoulpour A, Flik G, Huang Y, Muchowski JM, Masliah E, Schwarcz R, Muchowski PJ (2011) Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145:863-74 CrossRef
  • 作者单位:Markus J. Schwarz (1)
    Gilles J. Guillemin (2)
    Stefan J. Teipel (3)
    Katharina Buerger (4)
    Harald Hampel (5)

    1. Institute for Laboratory Medicine, University of Munich, Nussbaumstr. 7, 80336, Munich, Germany
    2. Department of Pharmacology, University of New South Wales, Sydney, Australia
    3. German Center for Neurodegenerative Diseases (DZNE), University of Rostock, Rostock, Germany
    4. Institute for Stroke and Dementia Research, Klinikum Grosshadern, University of Munich, Munich, Germany
    5. Department of Psychiatry, Goethe-University, Frankfurt/Main, Germany
  • ISSN:1433-8491
文摘
Increased degradation of tryptophan (TRP) through the kynurenine (KYN) pathway (KP) is known to be involved in the molecular mechanisms resulting in the neuropathogenesis of Alzheimer’s disease (AD). Activation of the KP leads to the production of neurotoxic metabolites 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN) by immune cells and neuroprotective derivates kynurenic acid (KYNA) and picolinic acid (PIC) by astrocytes and neurons. We therefore investigated whether an imbalance between neurotoxic and neuroprotective kynurenine metabolites could be detected in patients with AD. We measured serum levels of TRP, KYNA, 3-HK, PIC and QUIN in 20 patients with AD and for comparison in 20 patients with major depression, and 19 subjectively cognitive impaired subjects. Serum levels of 3-HK were markedly increased in AD patients compared to the comparison groups (p?<?.0001). Serum levels of the other KP metabolites were not significantly different between groups. Our data indicate an increased production of the neurotoxic KP metabolite 3-HK in AD. In contrast to its downstream metabolites QUIN and PIC, 3-HK can cross the blood–brain barrier via an active transport process. Our data therefore indicate an enhanced availability of 3-HK in the brain of AD patients, which may be related to the previously reported higher production of QUIN in AD brains.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.