A Genetic Mouse Model of Parkinson’s Disease Shows Involuntary Movements and Increased Postsynaptic Sensitivity to Apomorphine
详细信息    查看全文
  • 作者:N. Brehm ; F. Bez ; T. Carlsson ; B. Kern ; S. Gispert ; G. Auburger…
  • 关键词:Alpha ; synuclein ; Mouse model ; Parkinson’s disease ; Synaptic plasticity
  • 刊名:Molecular Neurobiology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:52
  • 期:3
  • 页码:1152-1164
  • 全文大小:1,584 KB
  • 参考文献:1.Gasser T (2005) Genetics of Parkinson’s disease. Curr Opin Neurol 18(4):363-69CrossRef PubMed
    2.Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 16(2):R183–R194. doi:10.-093/?hmg/?ddm159 CrossRef PubMed
    3.Klein C, Westenberger A (2012) Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 2(1):a008888. doi:10.-101/?cshperspect.?a008888 PubMed Central CrossRef PubMed
    4.Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045-047CrossRef PubMed
    5.Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841. doi:10.-126/?science.-090278 CrossRef PubMed
    6.Lill CM, Roehr JT, McQueen MB, Kavvoura FK, Bagade S, Schjeide BM, Schjeide LM, Meissner E, Zauft U, Allen NC, Liu T, Schilling M, Anderson KJ, Beecham G, Berg D, Biernacka JM, Brice A, DeStefano AL, Do CB, Eriksson N, Factor SA, Farrer MJ, Foroud T, Gasser T, Hamza T, Hardy JA, Heutink P, Hill-Burns EM, Klein C, Latourelle JC, Maraganore DM, Martin ER, Martinez M, Myers RH, Nalls MA, Pankratz N, Payami H, Satake W, Scott WK, Sharma M, Singleton AB, Stefansson K, Toda T, Tung JY, Vance J, Wood NW, Zabetian CP, Young P, Tanzi RE, Khoury MJ, Zipp F, Lehrach H, Ioannidis JP, Bertram L (2012) Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease genetics: the PDGene database. PLoS Genet 8(3):e1002548. doi:10.-371/?journal.?pgen.-002548 PubMed Central CrossRef PubMed
    7.H. LF (1912) Paralysis agitans. 1. Pathologische Anatomie., vol Vol. 3. Handbuch der Neurologie. Springer-Verlag Berlin
    8.Braak H, Braak E, Yilmazer D, de Vos RA, Jansen EN, Bohl J, Jellinger K (1994) Amygdala pathology in Parkinson’s disease. Acta Neuropathol 88(6):493-00CrossRef PubMed
    9.Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839-40. doi:10.-038/-2166 CrossRef PubMed
    10.George JM, Jin H, Woods WS, Clayton DF (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15(2):361-72CrossRef PubMed
    11.Kurz A, Wohr M, Walter M, Bonin M, Auburger G, Gispert S, Schwarting RK (2010) Alpha-synuclein deficiency affects brain Foxp1 expression and ultrasonic vocalization. Neuroscience 166(3):785-95. doi:10.-016/?j.?neuroscience.-009.-2.-54 CrossRef PubMed
    12.Grant LM, Richter F, Miller JE, White SA, Fox CM, Zhu C, Chesselet MF, Ciucci MR (2014) Vocalization deficits in mice over-expressing alpha-synuclein, a model of pre-manifest Parkinson’s disease. Behav Neurosci 128(2):110-21. doi:10.-037/?a0035965 PubMed Central CrossRef PubMed
    13.Fortin DL, Nemani VM, Voglmaier SM, Anthony MD, Ryan TA, Edwards RH (2005) Neural activity controls the synaptic accumulation of alpha-synuclein. J Neurosci 25(47):10913-0921. doi:10.-523/?JNEUROSCI.-922-05.-005 CrossRef PubMed
    14.Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329(5999):1663-667. doi:10.-126/?science.-195227 PubMed Central CrossRef PubMed
    15.Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA, Edwards RH (2010) Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65(1):66-9. doi:10.-016/?j.?neuron.-009.-2.-23 PubMed Central CrossRef PubMed
    16.Scott D, Roy S (2012) alpha-Synuclein inhibits intersynaptic vesicle mobility and maintains recycling-pool homeostasis. J Neurosci 32(30):10129-0135. doi:10.-523/?JNEUROSCI.-535-12.-012 PubMed Central CrossRef PubMed
    17.Senior SL, Ninkina N, Deacon R, Bannerman D, Buchman VL, Cragg SJ, Wade-Martins R (2008) Increased striatal dopamine release and hyperdopaminergic-like behaviour in mice lacking both alpha-synuclein and gamma-synuclein. Eur J Neurosci 27(4):947-57. doi:10.-111/?j.-460-9568.-008.-6055.?x PubMed Central CrossRef PubMed
    18.Chandra S, Fornai F, Kwon HB, Yazdani U, Atasoy D, Liu X, Hammer RE, Battaglia G, German DC, Castillo PE, Sudhof TC (2004) Double-knockout mice for alpha- and beta-synucleins: effect on synaptic functions. Proc Natl Acad Sci U S A 101(41):14966-4971. doi:10.-073/?pnas.-406283101 PubMed Central CrossRef PubMed
    19.Mones RJ, Elizan TS, Siegel GJ (1971) Analysis of L-dopa induced dyskinesia
  • 作者单位:N. Brehm (1)
    F. Bez (2)
    T. Carlsson (3) (4)
    B. Kern (3)
    S. Gispert (1)
    G. Auburger (1)
    M. A. Cenci (2)

    1. Experimental Neurology, Department of Neurology, Medical School, Goethe University Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
    2. Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC F11, SE-221 84, Lund, Sweden
    3. Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
    4. Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 431, SE-40530, Gothenburg, Sweden
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
Alpha-synuclein (SNCA) protein aggregation plays a causal role in Parkinson’s disease (PD). The SNCA protein modulates neurotransmission via the SNAP receptor (SNARE) complex assembly and presynaptic vesicle trafficking. The striatal presynaptic dopamine deficit is alleviated by treatment with levodopa (l-DOPA), but postsynaptic plastic changes induced by this treatment lead to a development of involuntary movements (dyskinesia). While this process is currently modeled in rodents harboring neurotoxin-induced lesions of the nigrostriatal pathway, we have here explored the postsynaptic supersensitivity of dopamine receptor-mediated signaling in a genetic mouse model of early PD. To this end, we used mice with prion promoter-driven overexpression of A53T–SNCA in the nigrostriatal and corticostriatal projections. At a symptomatic age (18 months), mice were challenged with apomorphine (5 mg/kg s.c.) and examined using both behavioral and molecular assays. After the administration of apomorphine, A53T-transgenic mice showed more severe stereotypic and dystonic movements in comparison with wild-type controls. Molecular markers of extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation and dephosphorylation, and Fos messenger RNA (mRNA), were examined in striatal tissue at 30 and 100 min after apomorphine injection. At 30 min, wild-type and transgenic mice showed a similar induction of phosphorylated ERK1/2, Dusp1, and Dusp6 mRNA (two MAPK phosphatases). At the same time point, Fos mRNA was induced more strongly in mutant mice than in wild-type controls. At 100 min after apomorphine treatment, the induction of both Fos, Dusp1, and Dusp6 mRNA was significantly larger in mutant mice than wild-type controls. At this time point, apomorphine caused a reduction in phospho-ERK1/2 levels specifically in the transgenic mice. Our results document for the first time a disturbance of ERK1/2 signaling regulation associated with apomorphine-induced involuntary movements in a genetic mouse model of synucleinopathy. This mouse model will be useful to identify novel therapeutic targets that can counteract abnormal dopamine-dependent striatal plasticity during both prodromal and manifest stages of PD. Keywords Alpha-synuclein Mouse model Parkinson’s disease Synaptic plasticity
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.