x Ge x alloy and n-ZnO nanowires has been developed. The electroluminescence (EL) emission of this LED is in the infrared range, which is dominated by the band gap of Si1-em class="EmphasisTypeItalic">x Ge x alloy. The EL wavelength variation of the LED shows a red shift, which increases with increasing mole fraction of Ge. With Ge mole fractions of 0.18, 0.23 and 0.29, the average EL wavelengths are around 1,144, 1,162 and 1,185 nm, respectively. The observed magnitudes of the red shifts are consistent with theoretical calculations. Therefore, by modulating the mole fraction of Ge in the Si1-em class="EmphasisTypeItalic">x Ge x alloy, we can adjust the band gap of the SiGe film and tune the emission wavelength of the fabricated LED. Such an IR LED device may have great potential applications in optical communication, environmental monitoring and biological and medical analyses." />
Wavelength-tunable infrared light emitting diode based on ordered ZnO nanowire/Si1-em class="a-plus-plus">x Ge x alloy heterojunction
详细信息    查看全文
  • 作者:Taiping Zhang ; Renrong Liang ; Lin Dong ; Jing Wang ; Jun Xu ; Caofeng Pan
  • 关键词:ZnO nanowire ; SiGe alloy ; infrared light emitting diode ; wavelength ; tunable
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:8
  • 期:8
  • 页码:2676-2685
  • 全文大小:3,537 KB
  • 参考文献:[1]Vispute, R. D.; Talyansky, V.; Choopun, S.; Sharma, R. P.; Venkatesan, T.; He, M.; Tang, X.; Halpern, J. B.; Spencer, M. G.; Li, Y. X. et al. Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Appl. Phys. Lett. 1998, 73, 348-50.View Article
    [2]Alivov, Y. I.; Van Nostrand, J. E.; Look, D. C.; Chukichev, M. V.; Ataev, B. M. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes. Appl. Phys. Lett. 2003, 83, 2943-945.View Article
    [3]Asil, H.; Gür, E.; ?inar, K.; Coskun, C. Electrochemical growth of n-ZnO onto the p-type GaN substrate: p-n heterojunction characteristics. Appl. Phys. Lett. 2009, 94, 2535-.
    [4]Zhong, J.; Chen, H.; Saraf, G.; Lu, Y; Choi, C. K.; Song, J. J.; Mackie, D. M.; Shen, H. Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency. Appl. Phys. Lett. 2007, 90, 2035-.
    [5]An, S. J.; Chae, J. H.; Yi, G. C.; Park, G. H. Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays. Appl. Phys. Lett. 2008, 92, 1211-.
    [6]Kim, K. S.; Kim, S. M.; Jeong, H.; Jeong, M. S.; Jung, G. Y. Enhancement of light extraction through the wave-guiding effect of ZnO sub-microrods in InGaN blue light-emitting diodes. Adv. Funct. Mater. 2010, 20, 1076-082.View Article
    [7]Alivov, Ya. I.; Kalinina, E. V.; Cherenkov, A. E.; Look, D. C.; Ataev, B. M.; Omaev, A. K.; Chukichev, M. V.; Bagnall, D. M. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl. Phys. Lett. 2003, 83, 4719-721.View Article
    [8]Look, D. C.; Claflin, B.; Alivov, Y. I.; Park, S. J. The future of ZnO light emitters. Phys. Stat. Sol. A 2004, 201, 2203-212.View Article
    [9]Xiang, B.; Wang, P. W.; Zhang, X. Z.; Dayeh, S. A.; Aplin, D. P. R.; Soci, C.; Yu, D. P.; Wang, D. L. Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett. 2007, 7, 323-28.View Article
    [10]Xu, S.; Xu, C.; Liu, Y.; Hu, Y. F.; Yang, R. S.; Yang, Q.; Ryou, J. H.; Kim, H. J.; Lochner, Z.; Choi, S. et al. Ordered nanowire array blue/near-UV light emitting diodes. Adv. Mater. 2010, 22, 4749-753.View Article
    [11]Jha, S.; Qian, J. C.; Kutsay, O.; Kovac Jr, J. K.; Luan, C. Y.; Zapien, J. A.; Zhang, W. J.; Lee, S. T.; Bello, I. Violet-blue LEDs based on p-GaN/n-ZnO nanorods and their stability. Nanotechnology 2011, 22, 2452-.
    [12]Zhang, S. G.; Zhang, X. W.; Si, F. T.; Dong, J. J.; Wang, J. X.; Liu, X.; Yin, Z. G.; Gao, H. L. Ordered ZnO nanorods-based heterojunction light-emitting diodes with grapheme current spreading layer. Appl. Phys. Lett. 2012, 101, 1211-.
    [13]Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photon. 2013, 7, 752-58.View Article
    [14]Yang, Q.; Wang, W. H.; Xu, S.; Niu, S.; Wang, Z. L. Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. Nano Lett. 2011, 11, 4012-017.View Article
    [15]Yang, Q.; Liu, Y.; Pang, C.; Chen, J.; Wen, X.; Wang, Z. L. Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect. Nano Lett. 2013, 13, 607-13.View Article
    [16]Wang, C. F.; Bao, R. R.; Zhao, K.; Zhang, T. P.; Dong, L.; Pan, C. F. Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezo-phototronic effect. Nano Energy, in press, DOI: 10.1016/j.nanoen.2014.11-033.
    [17]Sun, H.; Zhang, Q. F.; Wu, J. L. Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure. Nanotechnology 2006, 17, 2271-274.View Article
    [18]Bao, J. M.; Zimmler, M. A.; Capasso, F.; Wang, X. W.; Pen, Z. F. Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 2006, 6, 1719-722.View Article
    [19]Chen, P. L.; Ma, X. Y.; Yang, D. R. Ultraviolet electroluminescence from ZnO/p-Si heterojunctions. J. Appl. Phys. 2007, 101, 0531-.
    [20]Zimmler, M. A.; Voss, T.; Ronning, C.; Capasso, F. Excitonrelated electroluminescence from ZnO nanowire light-emitting diodes. Appl. Phys. Lett. 2009, 94, 2411-.View Article
    [21]Lee, S. W.; Cho, H. D.; Panin, G.; Kang, T. W. Vertical ZnO nanorod/Si contact light-emitting diode. Appl. Phys. Lett. 2011, 98, 0931-.
    [22]Jung, B. O.; Lee, J. H.; Lee, J. Y.; Kim, J. H.; Cho, H. K. High-purity ultraviolet electroluminescence from n-ZnO nanowires/p+-Si heterostructure LEDs with i-MgO film as carrier control layer. J. Electrochem. Soc. 2012, 159, H102–H106.
    [23]Chan, V. F.; Su, W.; Zhang, C. X.; Wu, Z. L.; Tang, Y.; Sun, X. Q.; Xu, H. J. Electroluminescence from ZnO-nanofilm/Si-micropillar heterostructure arrays. Opt. Express 2012, 20, 24280-427.
    [24]Tsai, J. K.; Shih, J. H.; Wu, T. C.; Meen, T. H. n-ZnO nanorods/p+-Si (111)
  • 作者单位:Taiping Zhang (1)
    Renrong Liang (2)
    Lin Dong (1)
    Jing Wang (2)
    Jun Xu (2)
    Caofeng Pan (1)

    1. Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
    2. Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
A novel infrared light emitting diode (LED) based on an ordered p-n heterojunction built of a p-Si1-em class="EmphasisTypeItalic">x Ge x alloy and n-ZnO nanowires has been developed. The electroluminescence (EL) emission of this LED is in the infrared range, which is dominated by the band gap of Si1-em class="EmphasisTypeItalic">x Ge x alloy. The EL wavelength variation of the LED shows a red shift, which increases with increasing mole fraction of Ge. With Ge mole fractions of 0.18, 0.23 and 0.29, the average EL wavelengths are around 1,144, 1,162 and 1,185 nm, respectively. The observed magnitudes of the red shifts are consistent with theoretical calculations. Therefore, by modulating the mole fraction of Ge in the Si1-em class="EmphasisTypeItalic">x Ge x alloy, we can adjust the band gap of the SiGe film and tune the emission wavelength of the fabricated LED. Such an IR LED device may have great potential applications in optical communication, environmental monitoring and biological and medical analyses.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.