Neuroligin-1 Knockdown Suppresses Seizure Activity by Regulating Neuronal Hyperexcitability
详细信息    查看全文
  • 作者:Min Fang ; Jin-Lai Wei ; Bo Tang ; Jing Liu ; Ling Chen…
  • 关键词:Neuroligin ; 1 ; Temporal lobe epilepsy ; NMDAR ; Cortex ; Hippocampus
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:53
  • 期:1
  • 页码:270-284
  • 全文大小:4,446 KB
  • 参考文献:1.Sander JW (2003) The epidemiology of epilepsy revisited. Curr Opin Neurol 16(2):165–170. doi:10.​1097/​01.​wco.​0000063766.​15877.​8e CrossRef PubMed
    2.Fisher RS, van Boas EW, Blume W, Elger C, Genton P, Lee P, Engel J Jr (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(4):470–472. doi:10.​1111/​j.​0013-9580.​2005.​66104.​x CrossRef PubMed
    3.Esclapez M, Hirsch JC, Ben-Ari Y, Bernard C (1999) Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy. J Comp Neurol 408(4):449–460. doi:10.​1002/​(SICI)1096-9861(19990614)408:​4<449:​:​AID-CNE1>3.​0.​CO;2-R CrossRef PubMed
    4.Dalva MB, McClelland AC, Kayser MS (2007) Cell adhesion molecules: signalling functions at the synapse. Nat Rev Neurosci 8(3):206–220. doi:10.​1038/​nrn2075 CrossRef PubMed
    5.Krueger DD, Tuffy LP, Papadopoulos T, Brose N (2012) The role of neurexins and neuroligins in the formation, maturation, and function of vertebrate synapses. Curr Opin Neurobiol 22(3):412–422. doi:10.​1016/​j.​conb.​2012.​02.​012 CrossRef PubMed
    6.Bottos A, Rissone A, Bussolino F, Arese M (2011) Neurexins and neuroligins: synapses look out of the nervous system. Cell Mol Life Sci. doi:10.​1007/​s00018-011-0664-z PubMed
    7.Ichtchenko K, Hata Y, Nguyen T, Ullrich B, Missler M, Moomaw C, Sudhof TC (1995) Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell 81(3):435–443CrossRef PubMed
    8.Bolliger MF, Frei K, Winterhalter KH, Gloor SM (2001) Identification of a novel neuroligin in humans which binds to PSD-95 and has a widespread expression. Biochem J 356(Pt 2):581–588CrossRef PubMed PubMedCentral
    9.Arac D, Boucard AA, Ozkan E, Strop P, Newell E, Sudhof TC, Brunger AT (2007) Structures of neuroligin-1 and the neuroligin-1/neurexin-1 beta complex reveal specific protein-protein and protein-Ca2+ interactions. Neuron 56(6):992–1003. doi:10.​1016/​j.​neuron.​2007.​12.​002 CrossRef PubMed
    10.Chubykin AA, Atasoy D, Etherton MR, Brose N, Kavalali ET, Gibson JR, Sudhof TC (2007) Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron 54(6):919–931. doi:10.​1016/​j.​neuron.​2007.​05.​029 CrossRef PubMed PubMedCentral
    11.Levinson JN, Chery N, Huang K, Wong TP, Gerrow K, Kang R, Prange O, Wang YT, El-Husseini A (2005) Neuroligins mediate excitatory and inhibitory synapse formation: involvement of PSD-95 and neurexin-1beta in neuroligin-induced synaptic specificity. J Biol Chem 280(17):17312–17319. doi:10.​1074/​jbc.​M413812200 CrossRef PubMed
    12.Chih B, Engelman H, Scheiffele P (2005) Control of excitatory and inhibitory synapse formation by neuroligins. Science 307(5713):1324–1328. doi:10.​1126/​science.​1107470 CrossRef PubMed
    13.Wittenmayer N, Korber C, Liu H, Kremer T, Varoqueaux F, Chapman ER, Brose N, Kuner T, Dresbach T (2009) Postsynaptic Neuroligin1 regulates presynaptic maturation. Proc Natl Acad Sci U S A 106(32):13564–13569. doi:10.​1073/​pnas.​0905819106 CrossRef PubMed PubMedCentral
    14.Stan A, Pielarski KN, Brigadski T, Wittenmayer N, Fedorchenko O, Gohla A, Lessmann V, Dresbach T, Gottmann K (2010) Essential cooperation of N-cadherin and neuroligin-1 in the transsynaptic control of vesicle accumulation. Proc Natl Acad Sci U S A 107(24):11116–11121. doi:10.​1073/​pnas.​0914233107 CrossRef PubMed PubMedCentral
    15.Pan Y, Liu G, Fang M, Shen L, Wang L, Han Y, Shen D, Wang X (2010) Abnormal expression of netrin-G2 in temporal lobe epilepsy neurons in humans and a rat model. Exp Neurol 224(2):340–346. doi:10.​1016/​j.​expneurol.​2010.​04.​001 CrossRef PubMed
    16.Fukata Y, Adesnik H, Iwanaga T, Bredt DS, Nicoll RA, Fukata M (2006) Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 313(5794):1792–1795. doi:10.​1126/​science.​1129947 CrossRef PubMed
    17.Bie B, Wu J, Yang H, Xu JJ, Brown DL, Naguib M (2014) Epigenetic suppression of neuroligin 1 underlies amyloid-induced memory deficiency. Nat Neurosci 17(2):223–231. doi:10.​1038/​nn.​3618 CrossRef PubMed
    18.Sudhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455(7215):903–911. doi:10.​1038/​nature07456 CrossRef PubMed PubMedCentral
    19.Harrison V, Connell L, Hayesmoore J, McParland J, Pike MG, Blair E (2011) Compound heterozygous deletion of NRXN1 causing severe developmental delay with early onset epilepsy in two sisters. Am J Med Genet A 155A(11):2826–2831. doi:10.​1002/​ajmg.​a.​34255 CrossRef PubMed
    20.Etherton MR, Tabuchi K, Sharma M, Ko J, Sudhof TC (2011) An autism-associated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus. EMBO J. doi:10.​1038/​emboj.​2011.​182 PubMed PubMedCentral
    21.Ching MS, Shen Y, Tan WH, Jeste SS, Morrow EM, Chen X, Mukaddes NM, Yoo SY, Hanson E, Hundley R, Austin C, Becker RE, Berry GT, Driscoll K, Engle EC, Friedman S, Gusella JF, Hisama FM, Irons MB, Lafiosca T, LeClair E, Miller DT, Neessen M, Picker JD, Rappaport L, Rooney CM, Sarco DP, Stoler JM, Walsh CA, Wolff RR, Zhang T, Nasir RH, Wu BL (2010) Deletions of NRXN1 (neurexin-1) predispose to a wide spectrum of developmental disorders. Am J Med Genet B Neuropsychiatr Genet 153B(4):937–947. doi:10.​1002/​ajmg.​b.​31063 PubMed PubMedCentral
    22.Brooks-Kayal A (2010) Epilepsy and autism spectrum disorders: are there common developmental mechanisms? Brain Dev 32(9):731–738. doi:10.​1016/​j.​braindev.​2010.​04.​010 CrossRef PubMed
    23.Kim J, Jung SY, Lee YK, Park S, Choi JS, Lee CJ, Kim HS, Choi YB, Scheiffele P, Bailey CH, Kandel ER, Kim JH (2008) Neuroligin-1 is required for normal expression of LTP and associative fear memory in the amygdala of adult animals. Proc Natl Acad Sci U S A 105(26):9087–9092. doi:10.​1073/​pnas.​0803448105 CrossRef PubMed PubMedCentral
    24.Woldbye DP, Angehagen M, Gotzsche CR, Elbrond-Bek H, Sorensen AT, Christiansen SH, Olesen MV, Nikitidou L, Hansen TV, Kanter-Schlifke I, Kokaia M (2010) Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures. Brain 133(9):2778–2788. doi:10.​1093/​brain/​awq219 CrossRef PubMed
    25.Fang M, Xi ZQ, Wu Y, Wang XF (2011) A new hypothesis of drug refractory epilepsy: neural network hypothesis. Med Hypotheses 76(6):871–876. doi:10.​1016/​j.​mehy.​2011.​02.​039 CrossRef PubMed
    26.Gjorlund MD, Nielsen J, Pankratova S, Li S, Korshunova I, Bock E, Berezin V (2012) Neuroligin-1 induces neurite outgrowth through interaction with neurexin-1beta and activation of fibroblast growth factor receptor-1. FASEB J 26(10):4174–4186. doi:10.​1096/​fj.​11-202242 CrossRef PubMed
    27.Schnell E, Long TH, Bensen AL, Washburn EK, Westbrook GL (2014) Neuroligin-1 knockdown reduces survival of adult-generated newborn hippocampal neurons. Front Neurosci 8:71. doi:10.​3389/​fnins.​2014.​00071 CrossRef PubMed PubMedCentral
    28.Smith BN, Dudek FE (2002) Network interactions mediated by new excitatory connections between CA1 pyramidal cells in rats with kainate-induced epilepsy. J Neurophysiol 87(3):1655–1658PubMed
    29.Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14(3):285–293. doi:10.​1038/​nn.​2741 CrossRef PubMed PubMedCentral
    30.Song JY, Ichtchenko K, Sudhof TC, Brose N (1999) Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci U S A 96(3):1100–1105CrossRef PubMed PubMedCentral
    31.Lehmann TN, Gabriel S, Kovacs R, Eilers A, Kivi A, Schulze K, Lanksch WR, Meencke HJ, Heinemann U (2000) Alterations of neuronal connectivity in area CA1 of hippocampal slices from temporal lobe epilepsy patients and from pilocarpine-treated epileptic rats. Epilepsia 41(Suppl 6):S190–S194CrossRef PubMed
    32.Perez Y, Morin F, Beaulieu C, Lacaille JC (1996) Axonal sprouting of CA1 pyramidal cells in hyperexcitable hippocampal slices of kainate-treated rats. Eur J Neurosci 8(4):736–748CrossRef PubMed
    33.Kalia LV, Kalia SK, Salter MW (2008) NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol 7(8):742–755. doi:10.​1016/​S1474-4422(08)70165-0 CrossRef PubMed PubMedCentral
    34.Churn SB, Sombati S, Jakoi ER, Severt L, DeLorenzo RJ (2000) Inhibition of calcium/calmodulin kinase II alpha subunit expression results in epileptiform activity in cultured hippocampal neurons. Proc Natl Acad Sci U S A 97(10):5604–5609. doi:10.​1073/​pnas.​0800716970800716​97 CrossRef PubMed PubMedCentral
    35.Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8(6):413–426. doi:10.​1038/​nrn2153 CrossRef PubMed
    36.Seeburg PH (1993) The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci 16(9):359–365CrossRef PubMed
    37.Tovar KR, Westbrook GL (1999) The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci 19(10):4180–4188PubMed
    38.Blundell J, Blaiss CA, Etherton MR, Espinosa F, Tabuchi K, Walz C, Bolliger MF, Sudhof TC, Powell CM (2010) Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. J Neurosci 30(6):2115–2129. doi:10.​1523/​JNEUROSCI.​4517-09.​2010 CrossRef PubMed PubMedCentral
    39.Budreck EC, Kwon OB, Jung JH, Baudouin S, Thommen A, Kim HS, Fukazawa Y, Harada H, Tabuchi K, Shigemoto R, Scheiffele P, Kim JH (2013) Neuroligin-1 controls synaptic abundance of NMDA-type glutamate receptors through extracellular coupling. Proc Natl Acad Sci U S A 110(2):725–730. doi:10.​1073/​pnas.​1214718110 CrossRef PubMed PubMedCentral
  • 作者单位:Min Fang (1)
    Jin-Lai Wei (2)
    Bo Tang (3)
    Jing Liu (3)
    Ling Chen (3)
    Zhao-Hua Tang (4)
    Jing Luo (3)
    Guo-Jun Chen (3)
    Xue-Feng Wang (3)

    1. Department of Emergency and Intensive Care Unit, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Chongqing, 400016, China
    2. Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Chongqing, 400016, China
    3. Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Chongqing, 400016, China
    4. Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Chongqing, 400016, China
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
Abnormally synchronized synaptic transmission in the brain leads to epilepsy. Neuroligin-1 (NL1) is a synaptic cell adhesion molecule localized at excitatory synapses. NL1 modulates synaptic transmission and determines the properties of neuronal networks in the mammalian central nervous system. We showed that the expression of NL1 and its binding partner neurexin-1β was increased in temporal lobe epileptic foci in patients and lithium-pilocarpine-treated epileptic rats. We investigated electrophysiological and behavioral changes in epileptic rats after lentivirally mediated NL1 knockdown in the hippocampus to determine whether NL1 suppression prevented seizures and, if so, to explore the probable underlying mechanisms. Our behavioral studies revealed that NL1 knockdown in epileptic rats reduced seizure severity and increased seizure latency. Whole-cell patch-clamp recordings of CA1 pyramidal neurons in hippocampal slices from NL1 knockdown epileptic rats revealed a decrease in spontaneous action potential frequency and a decrease in miniature excitatory postsynaptic current (mEPSC) frequency but not amplitude. The amplitude of N-methyl-d-aspartate receptor (NMDAR)-dependent EPSCs was also selectively decreased. Notably, NL1 knockdown reduced total NMDAR1 expression and the surface/total ratio in the hippocampus of epileptic rats. Taken together, these data indicate that NL1 knockdown in epileptic rats may reduce the frequency and severity of seizures and suppress neuronal hyperexcitability via changes in postsynaptic NMDARs.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.