Differences in photosynthesis and terpene content in leaves and roots of wild-type and transgenic Arabidopsis thaliana plants
详细信息    查看全文
  • 作者:J. S. Blanch ; J. Pe?uelas ; J. Llusià ; J. Sardans…
  • 关键词:Arabidopsis thaliana ; FaNES I ; leaf terpene contents ; root terpene contents ; photosynthesis
  • 刊名:Russian Journal of Plant Physiology
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:62
  • 期:6
  • 页码:823-829
  • 全文大小:179 KB
  • 参考文献:1.Kesselmeier, J. and Staudt, M., Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology, J. Atmos. Chem., 1999, vol. 33, pp. 23-8.CrossRef
    2.Owen, S.M. and Pe?uelas, J., Opportunistic emissions of volatile isoprenoids, Trends Plant Sci., 2005, vol. 10, pp. 420-26.CrossRef PubMed
    3.Penuelas, J. and Llusia, J., Bvocs: plant defense against climate warming? Trends Plant Sci., 2003, vol. 8, pp. 105-09.CrossRef PubMed
    4.Pichersky, E. and Gershenzon, J., The formation and function of plant volatiles: perfumes for pollinator attraction and defense, Curr. Opin. Plant Biol., 2002, vol. 5, pp. 237-43.CrossRef PubMed
    5.Pe?uelas, J., Ribas-Carbo, M., and Giles, L., Effects of allelochemicals on plant respiration and oxygen isotope fractionation by the alternative oxidase, J. Chem. Ecol., 1996, vol. 22, pp. 801-05.CrossRef PubMed
    6.Chameides, W.L., Lindsay, R.W., Richardson, J., and Kiang, C.S., The role of biogenic hydrocarbons in urban photochemical smog–Atlanta as a case-study, Science, 1988, vol. 241, pp. 1473-475.CrossRef PubMed
    7.Janson, R.W., Monoterpene emissions from Scots pine and Norwegian spruce, J. Geophys. Res., 1993, vol. 98, pp. 2839-850.CrossRef
    8.Asensio, D., Pe?uelas, J., Filella, I., and Llusià, J., Online screening of soil VOCs exchange responses to moisture, temperature and root presence, Plant Soil, 2007, vol. 291, pp. 249-61.CrossRef
    9.Asensio, D., Owen, S.M., Llusià, J., and Pe?uelas, J., The distribution of volatile isoprenoids in the soil horizons around Pinus halepensis trees, Soil Biol. Biochem., 2008, vol. 40, pp. 2937-947.CrossRef
    10.Rasmann, S., Kollner, T.G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., and Turlings, T.C.J., Recruitment of entomopathogenic nematodes by insect damaged maize roots, Nature, 2005, vol. 434, pp. 732-37.CrossRef PubMed
    11.Aharoni, A., Giri, A.P., Deuerlein, S., Griepink, F., de Kogel, W.J., Verstappen, F.W.A., Verhoeven, H.A., Jongsma, M.A., Schwab, W., and Bouwmeester, H.J., Terpenoid metabolism in wild-type and transgenic Arabidopsis plants, Plant Cell, 2003, vol. 15, pp. 2866-884.PubMedCentral CrossRef PubMed
    12.Chen, F., Tholl, D., D’Auria, J.C., Farooq, A., Pichersky, E., and Gershenzon, J., Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers, Plant Cell, 2003, vol. 2, pp. 481-94.CrossRef
    13.Aubourg, S., Lecharny, A., and Bohlmann, J., Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana, Mol. Genet. Genomics, 2002, vol. 267, pp. 730-45.CrossRef PubMed
    14.Tholl, D., Chen, F., Petri, J., Gershenzon, J., and Pichersky, E., Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers, Plant J., 2005, vol. 42, pp. 757-71.CrossRef PubMed
    15.Aharoni, A., Jongsma, M.A., Kim, T.Y., Ri, M.B., Giri, A.P., Verstappen, F.W.A., Schwab, W., and Bouwmeester, H.J., Metabolic engineering of terpenoid biosynthesis in plants, Phytochem. Rev., 2006, vol. 5, pp. 49-8.CrossRef
    16.Huang, M., Abel, C., Sohrabi, R., Petri, J., Haupt, I., Cosimano, J., Gershenzon, J., and Tholl, D., Variation of herbivore-induced volatile terpenes among Arabidopsis ecotypes depends on allelic differences and subcellular targeting of two terpene synthases, TPS02 and TPS03, Plant Physiol., 2010, vol. 153, pp. 1293-310.PubMedCentral CrossRef PubMed
    17.Steeghs, M., Bais, H.P., de Gouw, J., Goldan, P., Kuster, W., Northway, M., Fall, R., and Vivanco, J.M., Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis, Plant Physiol., 2004, vol. 135, pp. 47-8.PubMedCentral CrossRef PubMed
    18.Juenger, T.E., Sen, S., Bray, E., Stahl, E., Wayne, T., McKay, J., and Richards, J.H., Exploring genetic and expression differences between physiologically extreme ecotypes: comparative genomic hybridization and gene expression studies of Kas-1 and Tsu-1 accessions of Arabidopsis thaliana, Plant Cell Environ., 2010, vol. 33, pp. 1268-284.CrossRef PubMed
    19.Kappers, I.F., Aharoni, A., van Herpen, T.W.J.M., Luckerhoff, L.L.P., Dicke, M., and Bouwmeester, H.J., Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis, Science, 2005, vol. 309, pp. 2070-072.CrossRef PubMed
    20.Gibeau, D.M., Hulett, J., Cramer, G.R., and Seemann, J.R., Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions, Plant Physiol., 1997, vol. 115, pp. 317-19.CrossRef
    21.Genty, B., Briantais, J.M., and Baker, N.R., The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence, Biochim. Biophys. Acta, 1989, vol. 990, pp. 87-2.CrossRef
    22.Blanch, J.S., Sampedro, L., Llusià, J., Moreira, X., Zas, R., and Pe?uelas, J., Effects of phosphorus avail
  • 作者单位:J. S. Blanch (1) (2)
    J. Pe?uelas (1) (2)
    J. Llusià (1) (2)
    J. Sardans (1) (2)
    S. M. Owen (1) (2) (3)

    1. CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193, Catalonia, Spain
    2. CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
    3. Centre for Ecology and Hydrology (CEH), Bush Estate, Penicuik, EH26 0QB, UK
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
    Plant Sciences
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3407
文摘
We investigated the hypotheses that two different varieties of Arabidopsis thaliana show differences in physiology and terpene production. The two varieties of A. thaliana used in this study were wild-type (WT) and transgenic line (CoxIV-FaNES I) genetically modified to emit nerolidol with linalool/nerolidol synthase (COX). Photosynthetic rate, electron transport rate, fluorescence, leaf volatile terpene contents and root volatile terpene contents were analyzed. For both types, we found co-eluting α-pinene+β-ocimene, limonene, and humulene in leaves; and in the roots we found co-eluting α-pinene+β-ocimene, sabinene+β-pinene, β-myrcene, limonene, and humulene. At the end of the growing cycle, COX plants tended to have lower pools of terpene compounds in their leaves, with 78.6% lower photosynthesis rates and 30.8% lower electron transport rates, compared with WT plants at that time. The maximal photochemical efficiency F v/F m was also significantly lower (25.5%) in COX plants, indicating that these varieties were more stressed than WT plants. However, COX plants had higher (239%) root terpene contents compared to WT plants. COX plants appear to favor root production of volatile terpenes rather than leaf production. Thus we conclude that there were significant differences between COX and WT plants in terms of terpenoid pools, stress status and physiology. Keywords Arabidopsis thaliana FaNES I leaf terpene contents root terpene contents photosynthesis
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.