Thionin-like peptide from Capsicum annuum fruits: mechanism of action and synergism with fluconazole against Candida species
详细信息    查看全文
  • 作者:Gabriel B. Taveira ; André O. Carvalho ; Rosana Rodrigues…
  • 关键词:Antimicrobial peptides ; Thionin ; Synergistic activity ; Fluconazole ; Candida
  • 刊名:BMC Microbiology
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:16
  • 期:1
  • 全文大小:890 KB
  • 参考文献:1.Pappas PG. The role of azoles in the treatment of invasive mycoses: review of the Infectious Diseases Society of America guidelines. Curr Opin Infect Dis. 2011;24 Suppl 2:S1–S13.CrossRef
    2.Avent ML, Rogers BA, Cheng AC, Paterson DL. Current use of aminoglycosides: indications, pharmacokinetics and monitoring for toxicity. Intern Med J. 2001;41:441–9.CrossRef
    3.Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–95.CrossRef PubMed
    4.Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Terán LM. Antimicrobial peptides: General overview and clinical implications in human health and disease. Clinical Immunol. 2010;135:1–11.CrossRef
    5.Carvalho AO, Gomes VM. Plant defensins and defensin-like peptides - biological activities and biotechnological applications. Curr Pharm Des. 2011;17(38):4270–93.CrossRef
    6.Castro MS, Fontes W. Plant defense and antimicrobial peptides. Protein Pept Lett. 2005;12(1):13–8.PubMed
    7.Kido EA, Pandolfi V, Houllou-Kido LM, Andrade PP, Marcelino FC, Nepomuceno AL, et al. Plant Antimicrobial Peptides: An overview of superSAGE transcriptional profile and a functional review. Curr Protein Pept Sci. 2010;11:220–30.CrossRef PubMed
    8.Taveira GB, Mathias LS, Vieira-da-Motta O, Machado OLT, Rodrigues R, Carvalho AO, et al. Thionin-like peptides from Capsicum annuum fruits with high activity against human pathogenic bacteria and yeasts. Biopolymers. 2014;102:30–9.CrossRef PubMed
    9.Lee SC, Hong JK, Kim YJ, Hwang BK. Pepper gene enconding thionin is differentially induced by pathogens, ethilene and methyl jasmonete. Phisiol Mol Plant Pathol. 2000;56:207–16.CrossRef
    10.Stec B. Plant thionins – the structural perspective. Cell Mol Life Sci. 2006;63:1370–85.CrossRef PubMed
    11.Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Ver. 2012;36:288–305.CrossRef
    12.Krcmery V, Barner AJ. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect. 2002;4:243–60.CrossRef
    13.Sanglard D. Resistance of human fungal pathogens to antifungal drugs. Curr Opin Microbiol. 2002;5:379–85.CrossRef PubMed
    14.Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, Keniya MV, et al. Efflux-mediated antifungal drug resistance. Clin Microbiol Rev. 2009;22(2):291–321.PubMedCentral CrossRef PubMed
    15.Iwazaki RS, Endo EH, Ueda-Nakamura T, Nakamura CV, Garcia LB, Filho BP. In vitro antifungal activity of the berberine and its synergism with fluconazole. Antonie Van Leeuwenhoek. 2010;97:201–5.CrossRef PubMed
    16.Barbosa FM, Daffre S, Maldonado RA, Miranda A, Nimrichter L, Rodrigues ML. Gomesin, a peptide produced by the spider Acanthoscurria gomesiana, is a potent anticryptococcal agent that acts in synergism with fluconazole. FEMS Microbiol Lett. 2007;274(2):279–86.CrossRef PubMed
    17.Rossi DC, Muñoz JE, Carvalho DD, Belmonte R, Faintuch B, Borelli P, et al. Therapeutic use of a cationic antimicrobial peptide from the spider Acanthoscurria gomesiana in the control of experimental candidiasis. BMC Microbiology. 2012;12:28.PubMedCentral CrossRef PubMed
    18.Giudici AM, Regente MC, Villalaín J, Pfüller K, Pfüller U, De La Canal L. Mistletoe viscotoxins induce membrane permeabilization and spore death in phytopathogenic fungi. Physiol Plantarum. 2004;121:2–7.CrossRef
    19.Molina A, Ahl Goy P, Fraile A, Sfinchez-Monge R, Garcia-Olmedo F. Inhibition of bacterial and fungal plant pathogens by thionins of types I and II. Plant Sci. 1993;92:169–77.CrossRef
    20.Chandrashekhara NRS, Deepak S, Manjunath G, Shetty SH. Thionins (PR protein-13) mediate pearl millet downy mildew disease resistance. Arch Phytopathol Plant Protect. 2010;48(14):1356–66.CrossRef
    21.García-Olmedo F, Molina A, Alamillo JM, Rodríguez-Palenzuéla P. Plant Defense Peptides. Pept Sci. 1998;47:479–91.CrossRef
    22.Ganz T, Lehrer RI. Antibiotic peptides from higher eukaryotes: biology and applications. Mol Med Today. 1999;5:292–7.CrossRef PubMed
    23.Bera A, Singh S, Nagaraj R, Vaidya T. Induction of autophagic cell death in Leishmania donovani by antimicrobial peptides. Mol Biochem Parasitol. 2003;127:23–35.CrossRef PubMed
    24.Vylkova S, Nayyar N, Li W, Edgerton M. Human β-Defensins Kill Candida albicans in an Energy-Dependent and Salt-Sensitive Manner without Causing Membrane Disruption. Antimicrob Agents Chemother. 2007;51(1):154–61.PubMedCentral CrossRef PubMed
    25.Loeza-Ángeles H, Sagrero-Cisneros E, Lara-Zárate L, Villagómez-Gómez E, López-Meza JE, Ochoa-Zarzosa A. Thionin Thi2.1 from Arabidopsis thaliana expressed in endothelial cells shows antibacterial, antifungal and cytotoxic activity. Biotechnol Lett. 2008;30:1713–19.CrossRef PubMed
    26.Thevissen K, Ghazi A, De Samblanx GW, Brownlee C, Osborn RW, Broekaert WF. Fungal membrane responses induced by plant defensins and thionins. J Biol Chem. 1996;271:15018–25.CrossRef PubMed
    27.Giudici M, Poveda JA, Molina ML, De La Canal L, González-Ros JM. Antifungal effects and mechanism of action of viscotoxin A3. FEBS Journal. 2006;273:72–83.CrossRef PubMed
    28.Dathe M, Meyer J, Beyermann M, Maul B, Hoischen C, Bienert M. General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides. Biochim Biophys Acta. 2002;1558:171–86.CrossRef PubMed
    29.Addabbo F, Montagnani M, Goligorsky MS. Mitochondria and Reactive Oxygen Species. Hypertension. 2009;53:885–92.PubMedCentral CrossRef PubMed
    30.Aerts AM, François IEJA, Meert EMK, Li QT, Cammue BPA, Thevissen K. The antifungal activity of Rs-AFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol. 2007;13:243–47.CrossRef PubMed
    31.Mello EO, Ribeiro SFF, Carvalho AO, Santos IS, Da Cunha M, Santa Catarina C, et al. The antifungal activity of PvD1, a plant seed defensin of Phaseolus vulgaris, involves plasma membrane permeabilization, inhibition of medium acidification and induction of reactive oxygen species in yeast cells. Curr Microbiol. 2011;62:1209–17.CrossRef PubMed
    32.Hwang B, Hwang J-S, Lee J, Lee DG. The antimicrobial peptide, psacotheasin induces reactive oxygen species and triggers apoptosis in Candida albicans. Biochem Biophys Res Commun. 2011;405:267–71.CrossRef PubMed
    33.Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3:238–50.CrossRef PubMed
    34.Nicolas P. Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J. 2009;276:6483–96.CrossRef PubMed
    35.Matsuzaki K, Sugishita K, Harada M, Fujii N, Miyajima K. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys Acta. 1997;1327:119–30.CrossRef PubMed
    36.Franco OL. Peptide promiscuity: An evolutionary concept for plant defense. FEBS Letters. 2011;585:995–1000.CrossRef PubMed
    37.Carvalho AO, Gomes VM. Plant defensins - prospects for the biological functions and biotechnological properties. Peptides. 2009;30:1007–20.CrossRef
    38.Yonezawa A, Kuwahara J, Fujii N, Sugiura Y. Binding of tachyplesin I to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action. Biochemistry. 1992;31:2998–3004.CrossRef PubMed
    39.Boman HG, Agerberth B, Boman A. Mechanisms of action on Escherichia coli of cecropin-P1 and PR-39, 2 antibacterial peptides from pig intestine. Infect Immun. 1993;61:2978–84.PubMedCentral PubMed
    40.Helmerhorst EJ, Breeuwer P, van ‘t Hof W, Walgreen-Weterings E, Oomeni LCJM, Veerman ECI, et al. The Cellular Target of Histatin 5 on Candida albicans Is the Energized Mitochondrion. J Biol Chem. 1999;274(11):7286–91.CrossRef PubMed
    41.Vieira MEB, Vasconcelos IM, Machado OLT, Gomes VM, Carvalho AO. Isolation, characterization and mechanism of action of an antimicrobial peptide from Lecythis pisonis seeds with inhibitory activity against Candida albicans. Acta Biochim Biophys Sin. 2015;47(9):716–29.CrossRef PubMed
    42.Kulkarni MM, McMaster RW, Kamysz W, McGwire BS. Antimicrobial Peptide-induced Apoptotic Death of Leishmania Results from Calcium-dependent, Caspase-independent Mitochondrial Toxicity. J Biol Chem. 2009;284(23):15496–504.PubMedCentral CrossRef PubMed
    43.Aerts AM, Carmona-Gutierrez D, Lefevre S, Govaert G, Francois IE, Madeo F, et al. The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett. 2009;583:2513–16.CrossRef PubMed
    44.Lupetti A, Danesi R, Campa M, Del Tacca M, Kelly S. Molecular basis of resistance to azole antifungals. Trends Mol Med. 2002;8:76–81.CrossRef PubMed
    45.Cowen LE. The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat Rev Microbiol. 2008;6:187–98.CrossRef PubMed
    46.Broekaert WF, Mariën W, Terras FR, De Bolle MF, Proost P, Van Damme J, et al. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine rich domain of chitin-binding proteins. Biochemistry. 1992;31:4308–14.CrossRef PubMed
    47.Thevissen K, Terras FRG, Broekaert WF. Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol. 1999;65:5451–58.PubMedCentral PubMed
  • 作者单位:Gabriel B. Taveira (1)
    André O. Carvalho (1)
    Rosana Rodrigues (2)
    Fernanda G. Trindade (3)
    Maura Da Cunha (3)
    Valdirene M. Gomes (1)

    1. Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602,, RJ, Brazil
    2. Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602,, RJ, Brazil
    3. Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602,, RJ, Brazil
  • 刊物主题:Microbiology; Biological Microscopy; Fungus Genetics; Parasitology; Virology; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1471-2180
文摘
Background Thionins are a family of plant antimicrobial peptides (AMPs), which participate in plant defense system against pathogens. Here we describe some aspects of the CaThi thionin-like action mechanism, previously isolated from Capsicum annuum fruits. Thionin-like peptide was submitted to antimicrobial activity assays against Candida species for IC50 determination and synergism with fluconazole evaluation. Viability and plasma membrane permeabilization assays, induction of intracellular ROS production analysis and CaThi localization in yeast cells were also investigated.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.