Current state-of-the-art and future perspectives of robotic technology in neurosurgery
详细信息    查看全文
  • 作者:Tobias A. Mattei (1)
    Abraham Hafiz Rodriguez (2)
    Deepak Sambhara (2)
    Ehud Mendel (3)
  • 关键词:Robotics ; Minimally invasive neurosurgery ; Virtual reality ; Image ; guided surgery
  • 刊名:Neurosurgical Review
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:37
  • 期:3
  • 页码:357-366
  • 全文大小:
  • 参考文献:1. Adler JR Jr (2013) The future of robotics in radiosurgery. Neurosurgery 72(Suppl 1):8鈥?1 CrossRef
    2. Alric M, Chapelle F, Lemaire JJ, Gogu G (2009) Potential applications of medical and non-medical robots for neurosurgical applications. Minim Invasive Ther Allied Technol 18:193鈥?16 CrossRef
    3. Ambrose J (1973) Computerized transverse axial scanning (tomography). 2. Clinical application. Br J Radiol 46:1023鈥?047 CrossRef
    4. Ayres RU (1990) Technological transformations and long waves.1. Technol Forecast Soc Chang 37:1鈥?7 CrossRef
    5. Bekelis K, Radwan TA, Desai A, Roberts DW (2012) Frameless robotically targeted stereotactic brain biopsy: feasibility, diagnostic yield, and safety. J Neurosurg 116:1002鈥?006 CrossRef
    6. Benabid AL, Cinquin P, Lavalle S, Le Bas JF, Demongest J, de Rougemont J (1987) Computer-driven robot for stereotactic surgery connected to CT scan and magnetic resonance imaging; technological design and preliminary results. Appl Neurophysiol 50:153鈥?54
    7. Brodie J, Eljamel S (2011) Evaluation of a neurosurgical robotic system to make accurate burr holes. Int J Med Robot Comput Assist Surg 7:101鈥?06 CrossRef
    8. Buchanan BG (2005) A (very) brief history of artificial intelligence. AI Mag 26:53鈥?0
    9. Capek K (1923) R.U.R. (Rossum鈥檚 Universal Robots). Page & Co Garden City, Doubleday
    10. Dandy WE (1918) Ventriculography following the injection of air into the cerebral ventricles. Ann Surg 68:5鈥?1 CrossRef
    11. Dandy WE (1919) Rontgenography of the brain after the injection of air into the spinal canal. Ann Surg 70:397鈥?03 CrossRef
    12. Deacon G, Harwood A, Holdback J, Maiwand D, Pearce M, Reid I, Street M, Taylor J (2010) The Pathfinder image-guided surgical robot. Proc Inst Mech Eng Part H-J Eng Med 224:691鈥?13 CrossRef
    13. Devito DP, Kaplan L, Dietl R, Pfeiffer M, Horne D, Silberstein B, Hardenbrook M, Kiriyanthan G, Barzilay Y, Bruskin A, Sackerer D, Alexandrovsky V, Stuer C, Burger R, Maeurer J, Donald GD, Schoenmayr R, Friedlander A, Knoller N, Schmieder K, Pechlivanis I, Kim IS, Meyer B, Shoham M (2010) Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine (Phila Pa 1976) 35:2109鈥?115 CrossRef
    14. Di Ieva A (2010) Microtechnologies in neurosurgery. Proc Inst Mech Eng H 224:797鈥?00 CrossRef
    15. Dogangil G, Davies BL, Rodriguez y Baena F (2010) A review of medical robotics for minimally invasive soft tissue surgery. Proc Inst Mech Eng H 224:653鈥?79 CrossRef
    16. Eljamel MS (2009) Robotic neurological surgery applications: accuracy and consistency or pure fantasy? Stereotact Funct Neurosurg 87:88鈥?3 CrossRef
    17. Gera D (2003) Ancient Greek ideas on speech, language, and civilization. Oxford University Press, Oxford CrossRef
    18. Glauser D, Fankhauser H, Epitaux M, Hefti JL, Jaccottet A (1995) Neurosurgical robot Minerva: first results and current developments. J Image Guid Surg 1:266鈥?72 CrossRef
    19. Goto T, Hongo K, Kakizawa Y, Muraoka H, Miyairi Y, Tanaka Y, Kobayashi S (2003) Clinical application of robotic telemanipulation system in neurosurgery. Case report. J Neurosurg 99:1082鈥?084 CrossRef
    20. Goto T, Hongo K, Yako T, Hara Y, Okamoto J, Toyoda K, Fujie MG, Iseki H (2013) The concept and feasibility of EXPERT: intelligent armrest using robotics technology. Neurosurgery 72(Suppl 1):39鈥?2 CrossRef
    21. Goto T, Miyahara T, Toyoda K, Okamoto J, Kakizawa Y, Koyama J, Fujie MG, Hongo K (2009) Telesurgery of microscopic micromanipulator system 鈥渘eurobot鈥?in neurosurgery: interhospital preliminary study. J Brain Dis 1:45鈥?3
    22. Haegelen C, Touzet G, Reyns N, Maurage CA, Ayachi M, Blond S (2010) Stereotactic robot-guided biopsies of brain stem lesions: experience with 15 cases. Neurochirurgie 56:363鈥?67 CrossRef
    23. Havenbergh TS, Somers T (2012) Pathology: our lessons learned over 50 cases. J Neurol Surg B 73
    24. Heuer GG, Zaghloul KA, Jaggi JL, Baltuch GH (2008) Use of an integrated platform system in the placement of deep brain stimulators. Neurosurgery 62:245鈥?47, discussion 247鈥?48 CrossRef
    25. Hongo K, Goto T, Miyahara T, Kakizawa Y, Koyama J, Tanaka Y (2006) Telecontrolled micromanipulator system (NeuRobot) for minimally invasive neurosurgery. Acta Neurochir Suppl 98:63鈥?6 CrossRef
    26. Hongo K, Kobayashi S, Kakizawa Y, Koyama J, Goto T, Okudera H, Kan K, Fujie MG, Iseki H, Takakura K (2002) NeuRobot: telecontrolled micromanipulator system for minimally invasive microneurosurgery-preliminary results. Neurosurgery 51:985鈥?88, discussion 988
    27. Hounsfield GN (1995) Computerized transverse axial scanning (tomography): part I. Description of system. 1973. Br J Radiol 68:H166鈥揌172
    28. Howe RD, Matsuoka Y (1999) Robotics for surgery. Annu Rev Biomed Eng 1:211鈥?40 CrossRef
    29. Joskowicz L, Shamir, RR, Israel, Z, Shoshan, Y and Shoham, M. (2011) Renaissance robotic system for keyhole cranial neurosurgery: in-vitro accuracy study. Proceedings of the Simposio Mexicano en Ciruga Asistida por Computadora y Procesamiento de Imgenes Mdicas (MexCAS鈥?1)
    30. Kantelhardt SR, Finke M, Schweikard A, Giese A (2013) Evaluation of a completely robotized neurosurgical operating microscope. Neurosurgery 72(Suppl 1):19鈥?6 CrossRef
    31. Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V (2011) Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J 20:860鈥?68 CrossRef
    32. Kubben PL, Pouratian N (2012) An open-source and cross-platform framework for brain computer interface-guided robotic arm control. Surg Neurol Int 3:149 CrossRef
    33. Kwoh YS, Hou J, Jonckheere EA, Hayati S (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35:153鈥?60 CrossRef
    34. L鈥橭rsa R, Macnab CJ, Tavakoli M (2013) Introduction to haptics for neurosurgeons. Neurosurgery 72(Suppl 1):139鈥?53 CrossRef
    35. Lang MJ, Greer AD, Sutherland GR (2011) Intra-operative robotics: NeuroArm. Acta Neurochir Suppl 109:231鈥?36 CrossRef
    36. Le Roux PD, Das H, Esquenazi S, Kelly PJ (2001) Robot-assisted microsurgery: a feasibility study in the rat. Neurosurgery 48:584鈥?89 CrossRef
    37. Louw DF, Fielding T, McBeth PB, Gregoris D, Newhook P, Sutherland GR (2004) Surgical robotics: a review and neurosurgical prototype development. Neurosurgery 54:525鈥?36, discussion 536鈥?27 CrossRef
    38. Mattei T (2013) The O-Arm revolution in spine surgery. J Neurosurg Spine. 2013 Sep 20. [Epub ahead of print]
    39. Mei Q, Harris SJ, ArambulaCosio F, Nathan MS, Hibberd RD, Wickham JEA, Davies BL (1996) PROBOT鈥攁 computer integrated prostatectomy system. Vis Biomed Comput 1131:581鈥?90 CrossRef
    40. Moniz E (1934) L鈥?Angiographie Cerebrale Paris, France;. Masson & Cie
    41. Morgan PS, Carter T, Davis S, Sepehri A, Punt J, Byrne P, Moody A, Finlay P (2003) The application accuracy of the Pathfinder neurosurgical robot. Cars 2003. Comp Assist Radiol Surg Proc 1256:561鈥?67
    42. Moskowitz RM, Young JL, Box GN, Pare LS, Clayman RV (2009) Retroperitoneal transdiaphragmatic robotic-assisted laparoscopic resection of a left thoracolumbar neurofibroma. JSLS 13:64鈥?8
    43. Nathoo N, Cavusoglu MC, Vogelbaum MA, Barnett GH (2005) In touch with robotics: neurosurgery for the future. Neurosurgery 56:421鈥?33, discussion 421鈥?33 CrossRef
    44. Nimsky C, Rachinger J, Iro H, Fahlbusch R (2004) Adaptation of a hexapod-based robotic system for extended endoscope-assisted transsphenoidal skull base surgery. Minim Invasive Neurosurg 47:41鈥?6 CrossRef
    45. Ohta T, Kuroiwa T (2000) Freely movable armrest for microneurosurgery: technical note. Neurosurgery 46:1259鈥?261 CrossRef
    46. Pearce J (2011) George C. Devol, Inventor of Robot Arm, Dies at 99. The New York Times
    47. Procaccini E, Dorfmuller G, Fohlen M, Bulteau C, Delalande O (2006) Surgical management of hypothalamic hamartomas with epilepsy: the stereoendoscopic approach. Neurosurgery 59:ONS336鈥揙NS344, discussion ONS344-336 CrossRef
    48. Roser F, Tatagiba M, Maier G (2013) Spinal robotics: current applications and future perspectives. Neurosurgery 72(Suppl 1):12鈥?8 CrossRef
    49. Schizas C, Thein E, Kwiatkowski B, Kulik G (2012) Pedicle screw insertion: robotic assistance versus conventional C-arm fluoroscopy. Acta Orthop Belg 78:240鈥?45
    50. Shaikhouni A, Elder JB (2012) Computers and neurosurgery. World Neurosurg 78:392鈥?98 CrossRef
    51. Shoham M, Lieberman IH, Benzel EC, Togawa D, Zehavi E, Zilberstein B, Roffman M, Bruskin A, Fridlander A, Joskowicz L, Brink-Danan S, Knoller N (2007) Robotic assisted spinal surgery鈥攆rom concept to clinical practice. Comput Aided Surg 12:105鈥?15
    52. Stuer C, Ringel F, Stoffel M, Reinke A, Behr M, Meyer B (2011) Robotic technology in spine surgery: current applications and future developments. Acta Neurochir Suppl 109:241鈥?45 CrossRef
    53. Sukovich W, Brink-Danan S, Hardenbrook M (2006) Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist. Int J Med Robot 2:114鈥?22 CrossRef
    54. Sutherland GR, Lama S, Gan LS, Wolfsberger S, Zareinia K (2013) Merging machines with microsurgery: clinical experience with neuroArm. J Neurosurg 118:521鈥?29 CrossRef
    55. Sutherland GR, Latour I, Greer AD, Fielding T, Feil G, Newhook P (2008) An image-guided magnetic resonance-compatible surgical robot. Neurosurgery 62:286鈥?92, discussion 292鈥?83 CrossRef
    56. Sutherland GR, Wolfsberger S, Lama S, Zarei-nia K (2013) The evolution of neuroArm. Neurosurgery 72(Suppl 1):27鈥?2 CrossRef
    57. Taylor RH, Lavalle S, Burdea G, Mosges R (eds) (1995) Computer-integrated surgery: technology and clinical applications. MIT Press, Cambridge/MA
    58. Varma TR, Eldridge P (2006) Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery. Int J Med Robot 2:107鈥?13 CrossRef
    59. Varma TR, Eldridge PR, Forster A, Fox S, Fletcher N, Steiger M, Littlechild P, Byrne P, Sinnott A, Tyler K, Flintham S (2003) Use of the NeuroMate stereotactic robot in a frameless mode for movement disorder surgery. Stereotact Funct Neurosurg 80:132鈥?35 CrossRef
    60. Wei J, Wang T, Liu D (2011) A vision guided hybrid robotic prototype system for stereotactic surgery. Int J Med Robot 7:475鈥?81 CrossRef
    61. Young RF (1987) Application of robotics to stereotactic聽neurosurgery. Neurol Res 9:123鈥?28
    62. Zamorano L, Li Q, Jain S, Kaur G (2004) Robotics in neurosurgery: state of the art and future technological challenges. Int J Med Robot 1:7鈥?2 CrossRef
  • 作者单位:Tobias A. Mattei (1)
    Abraham Hafiz Rodriguez (2)
    Deepak Sambhara (2)
    Ehud Mendel (3)

    1. Invision Health Brain & Spine Center, 400 International Drive, Williamsville, NY, 14421, USA
    2. Department of Neurosurgery, University of Illinois at Peoria, Peoria, IL, USA
    3. Department of Neurosurgery, The Ohio State University/Wexner Medical Center - The James Cancer Center, Columbus, OH, USA
  • ISSN:1437-2320
文摘
Neurosurgery is one of the most demanding surgical specialties in terms of precision requirements and surgical field limitations. Recent advancements in robotic technology have generated the possibility of incorporating advanced technological tools to the neurosurgical operating room. Although previous studies have addressed the specific details of new robotic systems, there is very little literature on the strengths and drawbacks of past attempts, currently available platforms and prototypes in development. In this review, the authors present a critical historical analysis of the development of robotic technology in neurosurgery as well as a comprehensive summary of the currently available systems that can be expected to be incorporated to the neurosurgical armamentarium in the near future. Finally, the authors present a critical analysis of the main technical challenges in robotic technology development at the present time (such as the design of improved systems for haptic feedback and the necessity of incorporating intraoperative imaging data) as well as the benefits which robotic technology is expected to bring to specific neurosurgical subspecialties in the near future.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.