Red Sea Atlantis II brine pool nitrilase with unique thermostability profile and heavy metal tolerance
详细信息    查看全文
  • 作者:Sarah A. Sonbol ; Ari J. S. Ferreira ; Rania Siam
  • 关键词:Nitrilase ; Atlantis II Deep brine pool ; Red Sea ; Metagenomics ; Heavy metals tolerance ; Thermostability
  • 刊名:BMC Biotechnology
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:16
  • 期:1
  • 全文大小:2,203 KB
  • 参考文献:1.Kaul P, Banerjee A, Banerjee UC. Nitrile hydrolases. In: Polaina J, MacCabe AP, editors. Industrial enzymes. Netherlands: Springer; 2007. p. 531–47.CrossRef
    2.Gupta N, Balomajumder C, Agarwal VK. Enzymatic mechanism and biochemistry for cyanide degradation: a review. J Hazard Mater. 2010;176:1–13.CrossRef
    3.Banerjee A, Sharma R, Banerjee UC. The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol. 2002;60:33–44.CrossRef
    4.Yeom S-J, Kim H-J, Lee J-K, Kim D-E, Oh D-K. An amino acid at position 142 in nitrilase from Rhodococcus rhodochrous ATCC 33278 determines the substrate specificity for aliphatic and aromatic nitriles. Biochem J. 2008;415:401–7.CrossRef
    5.Robertson DE, Chaplin JA, DeSantis G, Podar M, Madden M, Chi E, et al. Exploring nitrilase sequence space for enantioselective catalysis. Appl Environ Microbiol. 2004;70:2429–36.CrossRef
    6.Cowan D, Cramp R, Pereira R, Graham D, Almatawah Q. Biochemistry and biotechnology of mesophilic and thermophilic nitrile metabolizing enzymes. Extermophiles. 1998;2:207–16.CrossRef
    7.Kim J-S, Tiwari MK, Moon H-J, Jeya M, Ramu T, Oh D-K, et al. Identification and characterization of a novel nitrilase from Pseudomonas fluorescens Pf-5. Appl Microbiol Biotechnol. 2009;83:273–83.CrossRef
    8.Bayer S, Birkemeyer C, Ballschmiter M. A nitrilase from a metagenomic library acts regioselectively on aliphatic dinitriles. Appl Microbiol Biotechnol. 2011;89:91–8.CrossRef
    9.Mueller P, Egorova K, Vorgias CE, Boutou E, Trauthwein H, Verseck S, et al. Cloning, overexpression, and characterization of a thermoactive nitrilase from the hyperthermophilic archaeon Pyrococcus abyssi. Protein Expr Purif. 2006;47:672–81.CrossRef
    10.Podar M, Eads J, Richardson T. Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study. BMC Evol Biol. 2005;5:42.CrossRef
    11.Gong J-S, Lu Z-M, Li H, Zhou Z-M, Shi J-S, Xu Z-H. Metagenomic technology and genome mining: emerging areas for exploring novel nitrilases. Appl Microbiol Biotechnol. 2013;97:6603–11.CrossRef
    12.Siam R, Mustafa GA, Sharaf H, Moustafa A, Ramadan AR, Antunes A, et al. Unique prokaryotic consortia in geochemically distinct sediments from Red Sea Atlantis II and discovery deep brine pools. PLoS One. 2012;7:e42872.CrossRef
    13.Winckler G, Aeschbach-Hertig W, Kipfer R, Botz R, Rübel AP, Bayer R, et al. Constraints on origin and evolution of Red Sea brines from helium and argon isotopes. Earth Planet Sci Lett. 2001;184:671–83.CrossRef
    14.Antunes A, Ngugi DK, Stingl U. Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep. 2011;3:416–33.CrossRef
    15.Sayed A, Ghazy MA, Ferreira AJS, Setubal JC, Chambergo FS, Ouf A, et al. A novel mercuric reductase from the unique deep brine environment of Atlantis II in the Red Sea. J Biol Chem. 2014;289:1675–87.CrossRef
    16.Mohamed YM, Ghazy MA, Sayed A, Ouf A, El-Dorry H, Siam R. Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea Brine Pool. Sci Rep. 2013;3:3358.
    17.Wang H, Li G, Li M, Wei D, Wang X. A novel nitrilase from Rhodobacter sphaeroides LHS-305: cloning, heterologous expression and biochemical characterization. World J Microbiol Biotechnol. 2014;30:245–52.CrossRef
    18.Noguchi H, Taniguchi T, Itoh T. MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res. 2008;15:387–96.CrossRef
    19.Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006;34:5623–30.CrossRef
    20.Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res. 2011;40(DI):D290–301.
    21.Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14:755–63.CrossRef
    22.Ewing B, Green P. Base-calling of automated sequencer traces using phred II. Error probabilities. Genome Res. 1998;8:186–94.CrossRef
    23.Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using phred I. Accuracy assessment. Genome Res. 1998;8:175–85.CrossRef
    24.Gordon D. Viewing and editing assembled sequences using consed. Curr Protoc Bioinforma Ed Board Andreas Baxevanis Al. 2003;11.2:11.
    25.Gordon D, Desmarais C, Green P. Automated finishing with autofinish. Genome Res. 2001;11:614–25.CrossRef
    26.Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing. Genome Res. 1998;8:195–202.CrossRef
    27.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CrossRef
    28.Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream M-A, et al. Artemis: sequence visualization and annotation. Bioinformatics. 2000;16:944–5.CrossRef
    29.Solovyev V, Salamov A. Automatic annotation of microbial genomes and metagenomic sequences. In Metagenomics and its applications in agriculture, biomedicine and environmental studies. NewYork: Nova Science Publishers; 2011. p. 61–78.
    30.Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8.CrossRef
    31.Li W, Cowley A, Uludag M, Gur T, McWilliam H, Squizzato S, et al. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 2015;43(W1):W580–4.CrossRef
    32.Kelley LA, Sternberg MJE. Protein structure prediction on the web a case study using the Phyre server. Nat Protoc. 2009;4:363–71.CrossRef
    33.Kumar S, Nussinov R. Salt bridge stability in monomeric proteins. J Mol Biol. 1999;293:1241–55.CrossRef
    34.Kumar S, Tsai CJ, Ma B, Nussinov R. Contribution of salt bridges toward protein thermostability. J Biomol Struct Dyn. 2000;17 Suppl 1:79–85.CrossRef
    35.Kumar S, Nussinov R. Relationship between ion pair geometries and electrostatic strengths in proteins. Biophys J. 2002;83:1595–612.CrossRef
    36.Sarakatsannis JN, Duan Y. Statistical characterization of salt bridges in proteins. Proteins. 2005;60:732–9.CrossRef
    37.Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007;35(Web Server issue):W71–74.CrossRef
    38.Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.
    39.Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.CrossRef
    40.Banerjee A, Kaul P, Sharma R, Banerjee UC. A high-throughput amenable colorimetric assay for enantioselective screening of nitrilase-producing microorganisms using pH sensitive indicators. J Biomol Screen. 2003;8:559–65.CrossRef
    41.Goyal SS, Rains DW, Huffaker RC. Determination of ammonium ion by fluorometry or spectrophotometry after on-line derivatization with o-phthalaldehyde. Anal Chem. 1988;60:175–9.CrossRef
    42.Banerjee A, Sharma R, Banerjee UC. A rapid and sensitive fluorometric assay method for the determination of nitrilase activity. Biotechnol Appl Biochem. 2003;37:289–93.CrossRef
    43.Bal W, Kozlowski H, Brasuñ J, Mlynarz P, Jezowska-Bojczuk M, Lesniak W, et al. Coordination of heavy metals by dithiothreitol, a commonly used thiol group protectant. J Inorg Biochem. 2001;84:77–88.CrossRef
    44.Lee H-J, Nam HJ, Noh D-Y. Dimeric mercury(II) chloride complex of sulfur-rich ligand : synthesis and X-ray crystal structure of trans-[{Hg(m-Cl)Cl(dPhEDT-DTT)}2] · (CH3CN)2. Bull Korean Chem Soc. 1999;20:1368–70.
    45.Zhang L, Yin B, Wang C, Jiang S, Wang H, Yuan YA, et al. Structural insights into enzymatic activity and substrate specificity determination by a single amino acid in nitrilase from Syechocystis sp. PCC6803. J Struct Biol.2014;188:93–101.CrossRef
    46.Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A. Protein Identification and Analysis Tools on the ExPASy Server. In: Walker JM. The Proteomics Protocols Handbook. New York: Humana Press; 2005. p. 571–607.
    47.Bjellqvist B, Basse B, Olsen E, Celis JE. Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis. 1994;15:529–39.CrossRef
    48.Bjellqvist B, Hughes GJ, Pasquali C, Paquet N, Ravier F, Sanchez JC, et al. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis. 1993;14:1023–31.CrossRef
    49.Cserháti M, Kriszt B, Szoboszlay S, Tóth Á, Szabó I, Táncsics A, et al. De novo genome project of cupriavidus basilensis OR16. J Bacteriol. 2012;194:2109–10.CrossRef
    50.Yancey PH. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol. 2005;208(Pt 15):2819–30.CrossRef
    51.Santos H, da Costa MS. Compatible solutes of organisms that live in hot saline environments. Environ Microbiol. 2002;4:501–9.CrossRef
    52.Neelon K, Schreier HJ, Meekins H, Robinson PM, Roberts MF. Compatible solute effects on thermostability of glutamine synthetase and aspartate transcarbamoylase from Methanococcus jannaschii. Biochim Biophys Acta. 2005;1753:164–73.CrossRef
    53.Yu H, Huang H. Engineering proteins for thermostability through rigidifying flexible sites. Biotechnol Adv. 2014;32:308–15.CrossRef
    54.Reed CJ, Lewis H, Trejo E, Winston V, Evilia C. Protein adaptations in archaeal extremophiles. Archaea. 2013;2013:e373275.CrossRef
    55.Lam SY, Yeung RCY, Yu T-H, Sze K-H, Wong K-B. A rigidifying salt
    idge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity. PLoS Biol. 2011;9:e1001027.CrossRef
    56.Bosshard HR, Marti DN, Jelesarov I. Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings. J Mol Recognit JMR. 2004;17:1–16.CrossRef
    57.Lee C-W, Wang H-J, Hwang J-K, Tseng C-P. Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study. PLoS One. 2014;9:e112751.CrossRef
    58.Anschutz P, Blanc G, Monnin C, Boulègue J. Geochemical dynamics of the Atlantis II deep (Red Sea): II. Composition of metalliferous sediment pore waters. Geochim Cosmochim Acta. 2000;64:3995–4006.CrossRef
    59.Purification and Characterization of Nitrilase from Fusarium solani IMI196840 | Protein Engineering Group. .
    60.Zhang Z-J, Xu J-H, He Y-C, Ouyang L-M, Liu Y-Y. Cloning and biochemical properties of a highly thermostable and enantioselective nitrilase from Alcaligenes sp. ECU0401 and its potential for (R)-(−)-mandelic acid production. Bioprocess Biosyst Eng. 2011;34:315–22.CrossRef
  • 作者单位:Sarah A. Sonbol (1)
    Ari J. S. Ferreira (1)
    Rania Siam (1)

    1. Biology Department and YJ-Science and Technology Research Center, American University in Cairo, New Cairo, 11835, Egypt
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Life Sciences
    Plant Breeding/Biotechnology
    Stem Cells
    Transgenics
  • 出版者:BioMed Central
  • ISSN:1472-6750
文摘
Background Nitrilases, which hydrolyze nitriles in a one-step reaction into carboxylic acids and ammonia, gained increasing attention because of the abundance of nitrile compounds in nature and their use in fine chemicals and pharmaceutics. Extreme environments are potential habitats for the isolation and characterization of extremozymes including nitrilases with unique resistant properties. The Red Sea brine pools are characterized by multitude of extreme conditions. The Lower Convective Layer (LCL) of the Atlantis II Deep Brine Pool in the Red Sea is characterized by elevated temperature (68 °C), high salt concentrations (250 ‰), anoxic conditions and high heavy metal concentrations.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.