Excited-State Intramolecular Proton Transfer Reaction of 3-Hydroxyflavone
详细信息    查看全文
  • 作者:Yanxue Jiang ; Yajing Peng
  • 关键词:TD ; DFT ; Infrared spectra ; Frontier molecular orbitals ; Excited ; state intramolecular proton transfer ; Potential energy curves
  • 刊名:Journal of Cluster Science
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:26
  • 期:6
  • 页码:1983-1992
  • 全文大小:1,490 KB
  • 参考文献:1.C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies (2009). Nature 462, 200鈥?05.CrossRef
    2.M. Buffa, S. Cartruan, A. Quaranta, G. Maggioni, and G. Della Mea (2012). Opt. Mater. 34, 1219鈥?224.CrossRef
    3.H. Li, Y. Shi, H. Yin, Y. Wang, L. Cong, M. X. Jin, and D. J. Ding (2015). Spectrochim. Acta Part A 141, 211鈥?15.CrossRef
    4.N. Kungwan, F. Plasser, A. J. A. Aquino, M. Barbatti, P. Wolschann, and H. Lischka (2012). Phys. Chem. Chem. Phys. 14, 9016鈥?025.CrossRef
    5.S. C. Lan and Y. H. Liu (2015). Spectrochim. Acta Part A 139, 49鈥?3.CrossRef
    6.P. Kukura, D. W. Mccamant, and R. A. Mathies (2007). Annu. Rev. Phys. Chem. 58, 461鈥?88.CrossRef
    7.S. R. Meech (2009). Chem. Soc. Rev. 38, 2922鈥?934.CrossRef
    8.T. J. Martinez (2006). Acc. Chem. Res. 39, 119鈥?26.CrossRef
    9.S. Hayashi, E. Taikhorshid, and K. Schulten (2009). Biophys. J. 96, 403鈥?16.CrossRef
    10.T. Tahara, S. Takeuchi, and K. Ishii (2006). J. Chin. Chem. Soc. 53, 181鈥?89.CrossRef
    11.T. Kobayashi, T. Saito, and H. Ohtani (2001). Nature 414, 531鈥?34.CrossRef
    12.S. Chai, G. J. Zhao, P. Song, S. Q. Yang, J. Y. Liu, and K. L. Han (2009). Phys. Chem. Chem. Phys. 11, 4385鈥?390.CrossRef
    13.G. J. Zhao and K. L. Han (2008). J. Comput. Chem. 29, 2010鈥?017.CrossRef
    14.G. J. Zhao and K. L. Han (2007). J. Chem. Phys. 127, 024306鈥?24312.CrossRef
    15.G. J. Zhao and K. L. Han (2007). J. Phys. Chem. A 111, 2469鈥?474.CrossRef
    16.G. J. Zhao, J. Y. Liu, L. C. Zhou, and K. L. Han (2007). J. Phys. Chem. B 111, 8940鈥?945.CrossRef
    17.G. J. Zhao and K. L. Han (2008). ChemPhysChem 9, 1842鈥?846.CrossRef
    18.Y. M. Dai, J. F. Zhao, Y. L. Cui, Q. Y. Wang, P. Song, F. C. Ma, and Y. Y. Zhao (2015). Spectrochim. Acta Part A 144, 76鈥?0.CrossRef
    19.Y. L. Frolov, Y. M. Sapozhnikov, S. S. Barer, N. N. Pogodaeva, and N. A. Tyukavkina (1974). Science 23, 2279鈥?281.
    20.G. J. Woolfe and P. J. Thistlethwaite (1981). J. Am. Chem. Soc. 103, 6916鈥?923.CrossRef
    21.M. Itoh, K. Tokumura, Y. Tanimoto, Y. Okada, H. Takeuchi, K. Obi, and I. Tanaka (1982). J. Am. Chem. Soc. 104, 4146鈥?150.CrossRef
    22.A. J. G. Strandjord, S. H. Courtney, D. M. Friedrich, and P. F. Barbara (1983). J. Phys. Chem. 87, 1125鈥?133.CrossRef
    23.D. Mcmorrow and M. Kasha (1983). J. Am. Chem. Soc. 105, 5133鈥?134.CrossRef
    24.A. J. G. Strandjord, D. E. Smith, and P. F. Barbara (1985). J. Phys. Chem. 89, 2362鈥?366.CrossRef
    25.S. M. Ormson, R. G. Brown, P. Matousek, and M. Towrie (2001). J. Phys. Chem. A 105, 3709鈥?718.CrossRef
    26.D. Yang, Y. Yang, and Y. Liu (2013). Commun. Comput. Chem. 1, 205鈥?15.
    27.M. T. Sun and H. X. Xu (2012). Small 8, 2777鈥?786.CrossRef
    28.J. F. Zhao, P. Song, Y. L. Cui, X. M. Liu, S. W. Sun, S. Y. Hou, and F. C. Ma (2014). Spectrochim. Acta Part A 131, 282鈥?87.CrossRef
    29.B. K. Paul and N. Guchhait (2011). J. Lumin. 131, 1918鈥?926.CrossRef
    30.G. J. Zhao and K. L. Han (2008). Biophys. J. 94, 38鈥?6.CrossRef
    31.X. H. Zhao and M. D. Chen (2010). J. Phys. Chem. A 114, 7786鈥?790.CrossRef
    32.K. C. Tang, C. L. Chen, H. H. Chuang, J. L. Chen, Y. J. Chen, Y. C. Lin, J. Y. Shen, W. P. Hu, and P. T. Chou (2011). J. Phys. Chem. Lett. 2, 3063鈥?068.CrossRef
    33.Y. Nagai, K. Saita, K. Sakata, S. Nanbu, M. Sekine, M. Nakata, and H. Sekiya (2010). J. Phys. Chem. A 114, 5041鈥?048.CrossRef
    34.J. F. Zhao, P. Song, and F. C. Ma (2014). Commun. Comput. Chem. 2, 117鈥?30.
    35.K. Ando, S. Hayashi, and S. Kato (2011). Phys. Chem. Chem. Phys. 13, 11118鈥?1127.CrossRef
    36.M. Zhang, W. Mi, and C. Hao (2013). Commun. Comput. Chem. 1, 269鈥?78.
    37.B. K. Paul, A. Ganguly, and N. Guchhait (2014). Spectrochim. Acta Part A. 131, 72鈥?1.CrossRef
    38.Y. Liu and S. C. Lan (2013). Commun. Comput. Chem. 1, 1鈥?.CrossRef
    39.M. T. Sun, Y. H. Chen, P. Song, and F. C. Ma (2005). Chem. Phys. Lett. 413, 110鈥?17.CrossRef
    40.Y. Liu and S. C. Lan (2013). Commun. Comput. Chem. 1, 235鈥?43.
    41.P. Song, Y. Z. Li, F. C. Ma, T. Pullerits, and M. T. Sun (2013). J. Phys. Chem. C 117, 15879鈥?5889.CrossRef
    42.F. Furche and R. Ahlrichs (2002). J. Chem. Phys. 117, 7433鈥?447.CrossRef
    43.J. L. Whitten (1973). J. Chem. Phys. 58, 4496鈥?501.CrossRef
    44.A. Schafer, C. Huber, and R. Ahlrichs (1994). J. Chem. Phys. 100, 5829鈥?835.CrossRef
    45.G. J. Zhao and K. L. Han (2012). Acc. Chem. Res. 45, 404鈥?13.CrossRef
    46.R. Wu, P. Nachtigall, and B. Brutschy (2004). Phys. Chem. Chem. Phys. 6, 515鈥?21.CrossRef
    47.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Scalmani, G. Cheeseman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr. J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, 2009).
    48.A. J. G. Strandjord and P. F. Barbara (1985). J. Phys. Chem. 89, 2355鈥?366.CrossRef
    49.D. Mcmorrow and M. Kasha (1984). J. Phys. Chem. 88, 2235鈥?243.CrossRef
    50.P. K. Mandal and A. Samanta (2003). J. Phys. Chem. A 107, 6334鈥?339.CrossRef
    51.J. F. Zhao, J. S. Chen, Y. L. Cui, J. Wang, L. X. Xia, Y. M. Dai, P. Song, and F. C. Ma (2015). Phys. Chem. Chem. Phys. 17, 1142鈥?150.CrossRef
    52.L. Serrano-Andres and M. Merchan (2009). J. Photochem. Photobiol. C 10, 21鈥?2.CrossRef
    53.Y. Saga, Y. Shibata, and H. Tamiaki (2010). J. Photochem. Photobiol. C 11, 15鈥?4.CrossRef
    54.J. F. Zhao, H. B. Yao, J. Y. Liu, and M. R. Hoffmann (2015). J. Phys. Chem. A 119, 681鈥?88.CrossRef
    55.A. L. Sobolewski and W. Domcke (1999). Phys. Chem. Chem. Phys. 1, 3065鈥?072.CrossRef
  • 作者单位:Yanxue Jiang (1)
    Yajing Peng (1) (2) (3)

    1. Academy of Mathematics and Physics, Department of Physics, Bohai University, Jinzhou, 121013, China
    2. State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
    3. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Inorganic Chemistry
    Physical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-8862
文摘
The excited-state intramolecular proton transfer (ESIPT) reaction of 3-hydroxyflavone (3-HF) in methylcyclohexane solvent has been investigated by using the DFT and TD-DFT methods. The geometric structure, IR vibrational spectra, frontier molecular orbitals, natural bond orbital, and potential energy curves in the ground state (S0) and first excited state (S1) are analyzed to reveal the mechanism of proton transfer. The results demonstrate that there are enol- and keto- two isomers for 3-HF in the S1, which is accorded with the experimental double fluorescence bands. The 3-HF-enol can be isomerized into 3-HF-keto via ESIPT. The mechanism of proton transfer is attributed to the strengthening of hydrogen bond originated from intramolecular charge transfer. The potential energy curves in the S0 and S1 states also illuminate the tautomerism mechanism between 3-HF-enol and 3-HF-keto, and the ground-state 3-HF-keto might not exist long and is isomerized mostly into the 3-HF-enol due to its high energy or instability. This is the reason that only one absorption peak is observed for 3-HF in experiment. Keywords TD-DFT Infrared spectra Frontier molecular orbitals Excited-state intramolecular proton transfer Potential energy curves
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.