Getting to the root of the problem: litter decomposition and peat formation in lowland Neotropical peatlands
详细信息    查看全文
  • 作者:Jorge Hoyos-Santillan ; Barry H. Lomax ; David Large ; Benjamin L. Turner…
  • 关键词:Carbon ; Litter decomposition ; Root ; Tropical peat ; Pyrolysis ; Mass spectrometry
  • 刊名:Biogeochemistry
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:126
  • 期:1-2
  • 页码:115-129
  • 全文大小:2,506 KB
  • 参考文献:Aber JD, Melillo JM, McClaugherty CA (1990) Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Can J Bot 68:2201–2208. doi:10.​1139/​b90-287 CrossRef
    Adair EC, Hobbie SE, Hobbie RK (2010) Single-pool exponential decomposition models: potential pitfalls in their use in ecological studies. Ecology 91:1225–1236. doi:10.​1890/​09-0430.​1 CrossRef
    Anderson J, Muller J (1975) Palynological study of a holocene peat and a miocene coal deposit from NW Borneo. Rev Palaeobot Palynol 19:291–351. doi:10.​1016/​0034-6667(75)90049-4 CrossRef
    Andriesse JP, Schelhaas RM (1987) A monitoring study on nutrient cycles in soils used for shifting cultivation under various climatic conditions in tropical Asia. III. The effects of land clearing through burning on fertility level. Agric Ecosyst Environ 19:311–332. doi:10.​1016/​0167-8809(87)90059-4 CrossRef
    Austin AT, Vivanco L, González-Arzac A, Pérez LI (2014) There’s no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. New Phytol. doi:10.​1111/​nph.​12959
    Ayres E, Steltzer H, Simmons BL et al (2009) Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol Biochem 41:606–610. doi:10.​1016/​j.​soilbio.​2008.​12.​022 CrossRef
    Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag 133:13–22. doi:10.​1016/​S0378-1127(99)00294-7 CrossRef
    Bloomfield J, Vogt KA, Vogt DJ (1993) Decay rate and substrate quality of fine roots and foliage of two tropical tree species in the Luquillo Experimental Forest, Puerto Rico. Plant Soil 150:233–245. doi:10.​1007/​BF00013020 CrossRef
    Brady MA (1997) Organic matter dynamics of coastal peat deposits in Sumatra. The University of British Columbia, Vancouver
    Briggs DEG (1999) Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis. Philos Trans R Soc B Biol Sci 354:7–17. doi:10.​1098/​rstb.​1999.​0356 CrossRef
    Bruchet A, Rousseau C, Mallevialle J (1990) Pyrolysis-GC-MS for investigating high-molecular-weight THM precursors and other refractory organics. J Am Water Work Assoc 82:66–74
    Bu’Lock JD, Harbone JB (1980) Phenolic compounds derived from shrikimate. In: Bu’Lock JD (ed) Biosynth. Royal Society of Chemistry, London, pp 40–75CrossRef
    Buttler A, Dinel H, Levesque PEM (1994) Effects of physical, chemical and botanical characteristics of peat on carbon gas fluxes. Soil Sci 158:365–374. doi:10.​1097/​00010694-199411000-00008 CrossRef
    Buurman P, Schellekens J, Fritze H, Nierop KGJ (2007) Selective depletion of organic matter in mottled podzol horizons. Soil Biol Biochem 39:607–621. doi:10.​1016/​j.​soilbio.​2006.​09.​012 CrossRef
    Carr AS, Boom A, Chase BM et al (2010) Molecular fingerprinting of wetland organic matter using pyrolysis-GC/MS: an example from the southern Cape coastline of South Africa. J Paleolimnol 44:947–961. doi:10.​1007/​s10933-010-9466-9 CrossRef
    Challinor JM (1989) A pyrolysis-derivatisation-gas chromatography technique for the structural elucidation of some synthetic polymers. J Anal Appl Pyrolysis 16:323–333. doi:10.​1016/​0165-2370(89)80015-4 CrossRef
    Chambers JQ, Higuchi N, Schimel JP et al (2000) Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122:380–388. doi:10.​1007/​s004420050044 CrossRef
    Chen H, Harmon ME, Sexton J, Fasth B (2002) Fine-root decomposition and N dynamics in coniferous forests of the Pacific Northwest, U.S.A. Can J For Res 32:320–331. doi:10.​1139/​x01-202 CrossRef
    Chimner RA, Ewel KC (2005) A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetl Ecol Manag 13:671–684. doi:10.​1007/​s11273-005-0965-9 CrossRef
    Clymo RS (1984) The limits to peat bog growth. Philos Trans R Soc B Biol Sci 303:605–654. doi:10.​1098/​rstb.​1984.​0002 CrossRef
    Cornelissen JHC, Van Bodegom PM, Aerts R et al (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10:619–627. doi:10.​1111/​j.​1461-0248.​2007.​01051.​x CrossRef
    Cornwell WK, Cornelissen JHC, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071. doi:10.​1111/​j.​1461-0248.​2008.​01219.​x CrossRef
    Couwenberg J, Dommain R, Joosten H (2009) Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob Chang Biol 16:1715–1732. doi:10.​1111/​j.​1365-2486.​2009.​02016.​x CrossRef
    Couwenberg J, Thiele A, Tanneberger F et al (2011) Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674:67–89. doi:10.​1007/​s10750-011-0729-x CrossRef
    Cusack DF, Chou WW, Yang WH et al (2009) Controls on long-term root and leaf litter decomposition in neotropical forests. Glob Chang Biol 15:1339–1355. doi:10.​1111/​j.​1365-2486.​2008.​01781.​x CrossRef
    Dommain R, Couwenberg J, Joosten H (2011) Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat Sci Rev 30:999–1010. doi:10.​1016/​j.​quascirev.​2011.​01.​018 CrossRef
    Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335. doi:10.​1126/​science.​156.​3780.​1322 CrossRef
    Esterle JS, Ferm JC (1994) Spatial variability in modern tropical peat deposits from Sarawak, Malaysia and Sumatra, Indonesia: analogues for coal. Int J Coal Geol 26:1–41. doi:10.​1016/​0166-5162(94)90030-2 CrossRef
    Falkowski P (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–296. doi:10.​1126/​science.​290.​5490.​291 CrossRef
    Field CB, Barros VR, Mach K, Mastrandrea M (2014) Climate change 2014: Impacts, adaptation, and vulnerability. Working Group II contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva
    Freeman C, Ostle N, Kang H (2001) An enzymic “latch” on a global carbon store. Nature 409:149. doi:10.​1038/​35051650 CrossRef
    Frolking S, Talbot J (2011) Modeling peatland carbon dynamics on decadal to millennial time scales. Meet Pap 1–6
    Gholz HL, Wedin DA, Smitherman SM et al (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Chang Biol 6:751–765. doi:10.​1046/​j.​1365-2486.​2000.​00349.​x CrossRef
    Gorham E, Janssens JA, Glaser PH (2003) Rates of peat accumulation during the postglacial period in 32 sites from Alaska to Newfoundland, with special emphasis on northern Minnesota. Can J Bot 81:429–438. doi:10.​1139/​b03-036 CrossRef
    Graça J, Santos S (2007) Suberin: a biopolyester of plants’ skin. Macromol Biosci 7:128–135. doi:10.​1002/​mabi.​200600218 CrossRef
    Hobbie SE (2005) Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems 8:644–656. doi:10.​1007/​s10021-003-0110-7 CrossRef
    Hoyos-Santillan J (2014) Controls of carbon turnover in lowland tropical peatlands. doi: 10.13140/2.1.3387.2329
    Ishiwatari M, Ishiwatari R, Sakashita H et al (1991) Pyrolysis of chlorophyll a after preliminary heating at a moderate temperature: implications for the origin of prist-1-ene on kerogen pyrolysis. J Anal Appl Pyrol 18:207–218. doi:10.​1016/​0165-2370(91)87002-4 CrossRef
    Jackson CR, Liew KC, Yule CM (2009) Structural and functional changes with depth in microbial communities in a tropical Malaysian peat swamp forest. Microb Ecol 57:402–412. doi:10.​1007/​s00248-008-9409-4 CrossRef
    Jauhiainen J, Takahashi H, Heikkinen JEP et al (2005) Carbon fluxes from a tropical peat swamp forest floor. Glob Chang Biol 11:1788–1797. doi:10.​1111/​j.​1365-2486.​2005.​001031.​x CrossRef
    Joosten H, Clarke D (2002) Wise use of mires and peatlands. International Mire Conservation Group / International Peat Society, p 304
    Joosten H, Couwenberg J (2008) Peatlands and carbon. In: Parish F, Sirin A, Charman D et al (eds) Assessment of peatlands, biodiversity and climate change. Main report, Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen, pp 100–117
    Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000. doi:10.​1126/​science.​208.​4447.​990 CrossRef
    Kuder T, Kruge MA (2001) Carbon dynamics in peat bogs: insights from substrate macromolecular chemistry. Global Biogeochem Cycles 15:721–727. doi:10.​1029/​2000GB001293 CrossRef
    Kurnianto S, Warren M, Talbot J et al (2015) Carbon accumulation of tropical peatlands over millennia: a modeling approach. Glob Chang Biol 21:431–444. doi:10.​1111/​gcb.​12672 CrossRef
    Laiho R (2006) Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol Biochem 38:2011–2024. doi:10.​1016/​j.​soilbio.​2006.​02.​017 CrossRef
    McClymont EL, Bingham EM, Nott CJ et al (2011) Pyrolysis GC–MS as a rapid screening tool for determination of peat-forming plant composition in cores from ombrotrophic peat. Org Geochem 42:1420–1435. doi:10.​1016/​j.​orggeochem.​2011.​07.​004 CrossRef
    Meier CL, Bowman WD (2008) Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc Natl Acad Sci U S A 105:19780–19785. doi:10.​1073/​pnas.​0805600105 CrossRef
    Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621. doi:10.​2307/​1936780 CrossRef
    Melillo JM, Naiman RJ, Aber JD, Linkins AE (1984) Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams. Bull Mar Sci 35:341–356
    Middleton BA, McKee KL (2001) Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J Ecol 89:818–828. doi:10.​1046/​j.​0022-0477.​2001.​00602.​x CrossRef
    Mulder MM, Van Der Hage ERE, Boon JJ (1992) Analytical in source pyrolytic methylation electron impact mass spectrometry of phenolic acids in biological matrices. Phytochem Anal 3:165–172. doi:10.​1002/​pca.​2800030405 CrossRef
    Nip M, Tegelaar EW, de Leeuw JW et al (1986) A new non-saponifiable highly aliphatic and resistant biopolymer in plant cuticles. Naturwissenschaften 73:579–585. doi:10.​1007/​BF00368768 CrossRef
    Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331. doi:10.​2307/​1932179 CrossRef
    Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol 17:798–818. doi:10.​1111/​j.​1365-2486.​2010.​02279.​x CrossRef
    Parsi Z, Hartog N, Górecki T, Poerschmann J (2007) Analytical pyrolysis as a tool for the characterization of natural organic matter—a comparison of different approaches. J Anal Appl Pyrolysis 79:9–15. doi:10.​1016/​j.​jaap.​2006.​10.​013 CrossRef
    Phillips S, Rouse GEG, Bustin RM (1997) Vegetation zones and diagnostic pollen profiles of a coastal peat swamp, Bocas del Toro, Panamá. Palaeogeogr Palaeoclimatol Palaeoecol 128:301–338. doi:10.​1016/​S0031-0182(97)81129-7 CrossRef
    Prager A, Barthelmes A, Joosten H (2006) A touch of tropics in temperate mires: of Alder carrs and carbon cycles. In: Silpola J, Warnecke S, Hood G et al (eds) Peatlands International 2/2006. International Peat Society, Jyväskylä, pp 26–29
    Schellekens J (2013) The use of molecular chemistry (pyrolisis-GC/MS) in the environmental interpretation of peat. Wageningen University
    Schellekens J, Buurman P (2011) n-Alkane distributions as palaeoclimatic proxies in ombrotrophic peat: the role of decomposition and dominant vegetation. Geoderma 164:112–121. doi:10.​1016/​j.​geoderma.​2011.​05.​012 CrossRef
    Schellekens J, Buurman P, Pontevedra-Pombal X (2009) Selecting parameters for the environmental interpretation of peat molecular chemistry—a pyrolysis-GC/MS study. Org Geochem 40:678–691. doi:10.​1016/​j.​orggeochem.​2009.​03.​006 CrossRef
    Schellekens J, Buurman P, Kuyper TW et al (2015) Influence of source vegetation and redox conditions on lignin-based decomposition proxies in graminoid-dominated ombrotrophic peat (Penido Vello, NW Spain). Geoderma 237–238:270–282. doi:10.​1016/​j.​geoderma.​2014.​09.​012 CrossRef
    Scowcroft PG (2009) Mass and nutrient dynamics of decaying litter from Passiflora mollissima and selected native species in a Hawaiian montane rain forest. J Trop Ecol 13:407. doi:10.​1017/​S026646740001059​2 CrossRef
    Silver W, Miya R (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419. doi:10.​1007/​s004420100740 CrossRef
    Singh JS, Gupta SR (1977) Plant decomposition and soil respiration in terrestrial ecosystems. Bot Rev 43:449–528. doi:10.​1007/​BF02860844 CrossRef
    Sjögersten S, Cheesman AW, Lopez O, Turner BL (2011) Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry 104:147–163. doi:10.​1007/​s10533-010-9493-7 CrossRef
    Sjögersten S, Black CR, Evers S et al (2014) Tropical wetlands: a missing link in the global carbon cycle? Global Biogeochem Cycles. doi: 10.​1002/​2014GB004844
    Steward CE, Neff J, Raab TK et al (2009) Soil organic carbon characterization by pyrolysis-gas chromatography-mass spectrometry (py-GC/MS) and tetramethylammonium-py-GC/MS: tracing plant and microbial contributions to SOM. In: 94th ESA annual convention on advances in biochemical methods for studying organic matter dynamics in an ecological context
    Talbot JM, Treseder KK (2012) Interactions among lignin, cellulose, and nitrogen drive litter chemistry–decay relationships. Ecology 93:345–354. doi:10.​1890/​11-0843.​1 CrossRef
    Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97. doi:10.​2307/​1938416 CrossRef
    Taylor BR, Prescott CE, Parsons WJF, Parkinson D (1991) Substrate control of litter decomposition in four Rocky Mountain coniferous forests. Can J Bot 69:2242–2250. doi:10.​1139/​b91-281 CrossRef
    Tripathi SK, Sumida A, Shibata H et al (2006) Leaf litterfall and decomposition of different above- and belowground parts of birch (Betula ermanii) trees and dwarf bamboo (Sasa kurilensis) shrubs in a young secondary forest in northern Japan. Biol Fertil Soils 43:237–246. doi:10.​1007/​s00374-006-0100-y CrossRef
    Trofymow JA, Moore TR, Titus B et al (2002) Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can J For Res 32:789–804. doi:10.​1139/​x01-117 CrossRef
    Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland—application to boreal and subarctic regions. The Holocene 12:69–80. doi:10.​1191/​0959683602hl522r​p CrossRef
    Valiela I, Wilson J (1984) Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores. Bull Mar Sci 35:261–269
    Vancampenhout K, Wouters K, Caus A et al (2008) Fingerprinting of soil organic matter as a proxy for assessing climate and vegetation changes in last interglacial palaeosols (Veldwezelt, Belgium). Quat Res 69:145–162. doi:10.​1016/​j.​yqres.​2007.​09.​003 CrossRef
    VSN International (2011) GenStat for Windows 14th Edition
    Wieder RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:1636. doi:10.​2307/​1940104 CrossRef
    Wright E, Black CR, Cheesman AW et al (2011) Contribution of subsurface peat to CO2 and CH4 fluxes in a neotropical peatland. Glob Chang Biol 17:2867–2881. doi:10.​1111/​j.​1365-2486.​2011.​02448.​x CrossRef
    Wright E, Black CR, Cheesman AW et al (2013) Impact of simulated changes in water table depth on ex situ decomposition of leaf litter from a Neotropical peatland. Wetlands 33:217–226. doi:10.​1007/​s13157-012-0369-6 CrossRef
    Yule CM, Gomez LN (2008) Leaf litter decomposition in a tropical peat swamp forest in Peninsular Malaysia. Wetl Ecol Manag 17:231–241. doi:10.​1007/​s11273-008-9103-9 CrossRef
    Zeikus JG (1981) Lignin metabolism and the carbon cycle. In: Advances in microbial ecology. Springer, pp 211–243
    Zhang X, Wang W (2015) The decomposition of fine and coarse roots: their global patterns and controlling factors. Sci Rep 5:9940. doi:10.​1038/​srep09940 CrossRef
    Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93. doi:10.​1093/​jpe/​rtn002 CrossRef
  • 作者单位:Jorge Hoyos-Santillan (1)
    Barry H. Lomax (1)
    David Large (2)
    Benjamin L. Turner (3)
    Arnoud Boom (4)
    Omar R. Lopez (5)
    Sofie Sjögersten (1)

    1. Division of Agricultural and Environmental Science, School of Biosciences, The University of Nottingham, Room C-36 Gateway Building, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
    2. Department of Chemical and Environmental Engineering, The University of Nottingham, Room A13 Coates Building, University Park Campus, Nottingham, NG7 2RD, UK
    3. Smithsonian Tropical Research Institute, Apartado Balboa, 0843–03092, Ancon, Republic of Panama
    4. Department of Geography, University of Leicester, Bennett Building - F72b, Leicester, LE1 7RH, UK
    5. Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad del Saber, Clayton, 0843-01103, Republic of Panama
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geochemistry
    Biochemistry
    Soil Science and Conservation
    Terrestrial Pollution
  • 出版者:Springer Netherlands
  • ISSN:1573-515X
文摘
Litter decomposition is an important control on carbon accumulation in tropical peatlands. We investigated the contribution of different litter tissues from two peatland tree species (Raphia taedigera and Campnosperma panamensis) to peat formation in four lowland tropical peatlands in the Republic of Panama. Leaves, stems, and roots decomposed at different rates; with roots being the slowest to decompose among tissues. The position of litter in the peat profile strongly influenced the decomposition rate of all tissue types. Roots decomposed up to five times faster at the surface than at 50 cm depth. Molecular characterization of litter and peat profiles by tetramethylammonium-pyrolysis–gas chromatography–mass spectrometry (TMAH-Py-GC/MS) revealed that the peat is formed predominantly of decomposed roots and stems, as indicated by the high lignin, low methylated fatty acids and carbohydrate concentrations in these litter types. Taken together, these data demonstrate that roots play a fundamental role in the formation of lowland Neotropical peatlands.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.