Bio-polyamides based on renewable raw materials
详细信息    查看全文
  • 作者:Joanna Pagacz ; Konstantinos N. Raftopoulos…
  • 关键词:Biopolymers ; Glass transition ; Molecular dynamics ; Differential scanning calorimetry ; WAXS ; Polymorphism
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:123
  • 期:2
  • 页码:1225-1237
  • 全文大小:1,494 KB
  • 参考文献:1.Kolb N, Winkler M, Syldatk C, Meier MAR. Long-chain polyesters and polyamides from biochemically derived fatty acids. Eur Polym J. 2014;51:159–66.CrossRef
    2.Mohanty AK, Misra M, Drzal LT. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ. 2002;10:19–26.CrossRef
    3.Swain SK, Patra SK, Kisku SK. Study of thermal, oxygen-barrier, fire-retardant and biodegradable properties of starch bionanocomposites. Polym Compos. 2014;35:1238–43.CrossRef
    4.Fan X-D, Deng Y, Waterhouse J, Pfromm P. Synthesis and characterization of polyamide resins from soy-based dimer acids and different amides. J Appl Polym Sci. 1998;68:305–14.CrossRef
    5.Kuciel S, Kuźniar P, Liber-Kneć A. Polyamides from renewable sources as matrices of short fiber reinforced biocomposites. Polimery. 2012;57:627–34.CrossRef
    6.Matadi R, Hablot E, Wanga K, Bahlouli N, Ahzi S, Avérous L. High strain rate behaviour of renewable biocomposites based on dimer fatty acid polyamides and cellulose fibres. Compos Sci Technol. 2011;71:674–82.CrossRef
    7.Hablot E, Matadi R, Ahzi S, Avérous L. Renewable biocomposites of dimer fatty acid-based polyamides with cellulose fibres: thermal, physical and mechanical properties. Compos Sci Technol. 2010;70:504–9.CrossRef
    8.Ranganathan S, Kumar R, Maniktala V. On the mechanism and synthetic applications of the thermal and alkaline degradation of c-18 castor oil. Tetrahedron. 1984;40:1167–78.CrossRef
    9.Lu W, Ness JE, Xie W, Zhang X, Minshull J, Gross RA. Biosynthesis of monomers for plastics from renewable oils. J Am Chem Soc. 2010;132:15451–5.CrossRef
    10.Guillaume L, Jouanneau J, Briffaudd T. Polyamide, composition comprising such a polyamide and their uses. US Patent 20110189419 A1.2011.
    11.Hong SH, Kim JS, Lee SY, In YH, Choi SS, Rih JK, Kim CH, Jeomg H, Hur CG, Kim JJ. The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat Biotechnol. 2004;22:1275–81.CrossRef
    12.Oh IJ, Kim DH, Oh EK, Lee SY, Lee J. Optimization and scale-up of succinic acid production by Mannheimia succiniciproducens LPK7. J Microbiol Biotechnol. 2009;19:167–71.CrossRef
    13.Kind S, Wittmann C. Bio-based production of the platform chemical 1,5-diaminopentane. Appl Microbiol Biotechnol. 2011;91:1287–96.CrossRef
    14.Yamano N, Kawaski N, Nakayama A, Yamamoto N, Aiba S. Novel biodegradable polyamide 4. In: Proceedings of the 2nd Biomass-Asia Workshop, Bangkok, 13–15 Dec 2005.
    15.Winkler M, Steinbiß M, Meier MAR. A more sustainable Wohl-Ziegler bromination: versatile derivatization of unsaturated FAMEs and synthesis of renewable polyamides. Eur J Lipid Sci Technol. 2014;116:44–51.CrossRef
    16.Evonik VESTAMID® Terra—Technical information. http://​www.​vestamid.​com/​product/​vestamid/​en/​products-services/​vestamid-terra/​technical-properties/​pages/​Produktinformati​onen.​aspx . Accessed 29 Nov 2014.
    17.Ali MA, Tateyama S, Oka Y, Kaneko D, Okajima MK, Kaneko T. Syntheses of high-performance biopolyamides derived from itaconic acid and their environmental corrosion. Macromolecules. 2013;46:3719–25.CrossRef
    18.Goderis B, Klein PG, Hill SP, Koning CE. A comparative DSC, X-Ray and NMR study on the crystallinity of isomeric aliphatic polyamides. Progr Colloid Polym Sci. 2005;130:40–50.
    19.Jones NA, Atkins EDT, Hill MJ, Cooper SJ, Franco L. Polyamides with a choice of structure and crystal surface chemistry. studies of chain-folded Lamellae of Nylons 8 10 and 10 12 and Comparison with the Other 2N 2(N + 1) Nylons 4 6 and 6 8. Macromolecules. 1997;30:3569–78.CrossRef
    20.Liu X, Wu Q, Berglund LA. Polymorphism in polyamide 66/clay nanocomposites. Polymer. 2002;43:4967–72.CrossRef
    21.DSM EcoPaXX®—Product information. http://​www.​dsm.​com/​products/​ecopaxx/​en_​US/​product-info.​html . Accessed 29 Nov 2014.
    22.Standard ASTM D6866 – 12, Standard test methods for determining the biobased content of solid, liquid, and gaseous samples using radiocarbon analysis, http://​www.​astm.​org/​Standards/​D6866.​htm . Accessed 29 Nov 2014.
    23.Schawe JEK, Heter T, Hertz C, Alig I, Lellinger D. Stochastic temperature modulation: a new technique in temperature-modulated DSC. Thermochim Acta. 2006;446:147–55.CrossRef
    24.Jasinska L, Villani M, Wu J, van Es D, Klop E, Rastogi S, Koning CE. Novel fully biobased semicrystalline polyamides. Macromolecules. 2011;44:3458–66.CrossRef
    25.Paredes N, Rodríguez-Galá A, Puigallí J. Synthesis and characterization of a family of biodegradable poly (ester amide)s derived from glycine. J Polym Sci, Part A: Polym Chem. 1998;36:1271–82.CrossRef
    26.Kaczmarczyk B, Sek D. Hydrogen bonds in poly(ester amide)s and their model compounds. Polymer. 1995;36(26):5019–25.CrossRef
    27.Vasantham N, Salem DR. FTIR spectroscopic characterization of structural changes in polyamide-6 fibers during annealing and drawing. J Polym Sci, Part B: Polym Phys. 2001;39:536–47.CrossRef
    28.Ishisue T, Okamoto M, Tashiro K. Real-time investigation of crystallization in nylon 6-clay nano-composite probed by infrared spectroscopy. Polymer. 2010;51:5585–91.CrossRef
    29.Galimberti D, Quarti C, Milani A, Brambilla L, Civalleri B, Castiglioni C. IR spectroscopy of crystalline polymers from ab initio calculations: Nylon 6,6. Vib Spectrosc. 2013;66:83–92.CrossRef
    30.Jasinska-Walc L, Dudenko D, Rozanski A, Thiyagarajan S, Sowinski P, van Es D, Shu J, Hansen MR, Koning CE. Structure and molecular dynamics in renewable polyamides from dideoxy–diamino isohexide. Macromolecules. 2012;45:5653–66.CrossRef
    31.Wu Q, Liu X, Berglund LA. FT-IR spectroscopic study of hydrogen bonding in PA6/clay nanocomposites. Polymer. 2002;43:2445–9.CrossRef
    32.Rotter G, Ishida H. FTIR separation of nylon-6 chain conformations: clarification of the mesomorphous and γ-crystalline phases. J Polym Sci B Polym Phys. 1992;30(5):489–95.CrossRef
    33.Nair SS, Ramesh C. Studies on the crystallization behavior of nylon-6 in the presence of layered silicates using variable temperature WAXS and FTIR. Macromolecules. 2005;38(2):454–62.CrossRef
    34.Jones NA, Atkins EDT, Hill MJ, Cooper SJ, Franco L. Chain-folded lamellar crystals of aliphatic polyamides. Investigation of nylons 4 8, 4 10, 4 12, 6 10, 6 12, 6 18 and 8 12. Polymer. 1997;38:2689–99.CrossRef
    35.Ho J-C, Wei K-H. Induced γ → α crystal transformation in blends of polyamide 6 and liquid crystalline copolyester. Macromolecules. 2000;33:5181–6.CrossRef
    36.Auriemma F, Petraccone V, Parravicini L, Corradini P. Mesomorphic form (β) of nylon 6. Macromolecules. 1997;30:7554–9.CrossRef
    37.Li Y, Zhu X, Tian G, Yan D, Zhou E. Multiple melting endotherms in melt-crystallized nylon 10,12. Polym Int. 2001;50:677–82.CrossRef
    38.Mehta RH. In: Immergut EH, Grulk EA, editors. The polymer handbook. 4th ed. Wiley: New York; 1999; Chapter physical constants of some polymers [Ch. V, p. 126].
    39.Murthu NS. Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides. J Polym Sci B Polym Phys. 2006;44:1763–82.CrossRef
    40.Mo ZS, Meng QB, Feng JH, Zhang HF, Chen DL. Crystal structure and thermodynamic parameters of Nylon-1010. Polym Int. 1993;32(1):53–60.CrossRef
    41.Fornes TD, Paul DR. Crystallization behavior of nylon 6 nanocomposites. Polymer. 2003;44:3945–61.CrossRef
    42.Chocinski-Arnault L, Gaudefroy V, Gacougnolle JL, Riviere A. Memory effect and crystalline structure in polyamide 11. J Macromol Sci B Phys. 2002;41:777–85.CrossRef
    43.Ricou P, Pinel E, Juhasz N. Temperature experiments for improved accuracy in the calculation of polyamide-11 crystallinity by X-ray fiffraction. Adv X-Ray Anal. 2005;48:170–5.
    44.Alexander LE. X-ray diffraction methods in polymer science. New York: Wiley; 1969. p. 137–97.
    45.Feng JH, Mo ZS, Chen DL. Density, equilibrium heat of fusion and equilibrium melting temperature of Nylon 1010. Chin J Polym Sci. 1990;8(1):61–8.
    46.Wunderlich B. Macromolecular physics. New York: Academic Press; 1973.
    47.Xenopoulos A, Clark ES. In: Nylon plastics handbook. Kohan MI, editor. Munich, Vienna, New York: Hanser Publishers; 1995. Chapter 5.
    48.Williams RS, Daniels T. Polyamides. RAPRA Rev Rep 1990;3:Rep.33.
    49.Gedde UW. Polymer physics. London: Chapman and Hall; 1995. p. 173.
    50.Toda A, Tomita C, Hikosaka M. Temperature modulated DSC of irreversible melting of nylon 6 crystals. J Therm Anal Calorim. 1998;54:623–35.CrossRef
    51.Prevorsek C, Butler RH. Reimschuessel HK. Mechanical relaxations in polyamides. J Polym Sci Part A-2. 1971;9(5):867–86.
    52.Raftopoulos KN, Janowski B, Apekis L, Pielichowski K, Pissis P. Molecular mobility and crystallinity in polytetramethylene ether glycol in the bulk and as soft component in polyurethanes. Eur Polym J. 2011;47(11):2120–33.CrossRef
    53.Raftopoulos KN, Jancia M, Aravopoulou D, Hebda E, Pielichowski K, Pissis P. POSS along the hard segments of polyurethane phase separation and molecular dynamics. Macromolecules. 2013;46(18):7378–86.CrossRef
    54.Raftopoulos KN, Pandis C, Apekis L, Pissis P, Janowski B, Pielichowski K, Jaczewska J. Polyurethane–POSS hybrids: molecular dynamics studies. Polymer. 2010;51:709–18.CrossRef
    55.Kosma S, Raftopoulos K, Pissis P, Strachota A, Matějka L, Nedbal J. Molecular mobility of stannoxane modified epoxy resins. J Nanostr Polym Nanocomp. 2007;3(4):144–56.
    56.Zhao C, Hu G, Justice R, Schaefer DW, Zhang S, Jang M, Han CC. Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer. 2005;46(14):5125–32.CrossRef
    57.Urman K, Otaigbe J. Novel phosphate glass/polyamide 6 hybrids: miscibility, crystallization kinetics, and mechanical properties. J Polym Sci, Part B: Polym Phys. 2006;44(2):441–50.CrossRef
    58.Buchanan DR, Walters JP. Glass-transition temperatures of polyamide textile fibers: part I: the effects of molecular structure, water, fiber structure, and experimental technique. Text Res J. 1977;47:398–406.
    59.Saotome K, Komoto H. Polyamides having long methylene chain units. J Polym Sci Part A-1 Polym Chem. 1966;4:1463–473.
    60.Donth EJ. The glass transition: relaxation dynamics in liquids and disordered materials. Springer: Berlin, Heidelberg, New York; 2001.
    61.Richardson MJ, Savill NG. Derivation of accurate glass transition temperatures by differential scanning calorimetry. Polymer. 1975;16(10):753–7.CrossRef
  • 作者单位:Joanna Pagacz (1) (2)
    Konstantinos N. Raftopoulos (1) (3)
    Agnieszka Leszczyńska (1)
    Krzysztof Pielichowski (1)

    1. Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155, Kraków, Poland
    2. Wroclaw Research Centre EIT+, ul. Stabłowicka 147, 54-066, Wrocław, Poland
    3. Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
Structural characterization of a series of novel bio-polyamides based on renewable raw materials—PA 4.10, PA 6.10, PA 10.10, and PA 10.12—was performed by Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction (WAXD). Infrared spectra and the WAXD patterns indicate the coexistence of different crystalline forms, α- and γ-triclinic and β-pseudohexagonal. Thermal properties in the glass transition (T g) and melting region were then investigated using temperature-modulated DSC (TOPEM® DSC). The melting point (T m) was found to increase with increasing amide/methylene ratio in the polymer backbone, which is consistent with the increase in linear density of hydrogen bonds. Studies on the molecular dynamics by dynamic mechanical analysis show three distinct regions associated with the γ- and the β-relaxation and the dynamic glass transition. TOPEM® DSC data reveal that at low frequency/long timescales, the materials with significantly different amide/methylene ratios have similar segmental dynamics. Keywords Biopolymers Glass transition Molecular dynamics Differential scanning calorimetry WAXS Polymorphism
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.