Filament growth dynamics in solid electrolyte-based resistive memories revealed by in situ TEM
详细信息    查看全文
  • 作者:Xuezeng Tian (1)
    Lifen Wang (1)
    Jiake Wei (1)
    Shize Yang (1)
    Wenlong Wang (1)
    Zhi Xu (1)
    Xuedong Bai (1)
  • 关键词:resistive switching ; conductive filaments ; in situ transmission electron microscope ; real ; time observation ; computer simulation
  • 刊名:Nano Research
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:7
  • 期:7
  • 页码:1065-1072
  • 全文大小:3,288 KB
  • 参考文献:1. Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-based resistive switching memories-Nanoionic mechanisms, prospects, and challenges. / Adv. Mater. 2009, / 21, 2632鈥?663. CrossRef
    2. Chen, A. Ionic memory technology. In / Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes. Kharton, V. V. Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; pp. 1鈥?0. CrossRef
    3. Lu, W.; Jeong, D.; Kozicki, M.; Waser, R. Electrochemical metallization cells-blending nanoionics into nanoelectronics? / MRS Bull. 2012, / 37, 124鈥?30. CrossRef
    4. Yang, J. J. S.; Strukov, D. B.; Stewart, D. R. Memristive devices for computing. / Nat. Nanotechnol. 2013, / 8, 13鈥?4. CrossRef
    5. Fujisaki, Y. Review of emerging new solid-state non-volatile memories. / Jpn. J. Appl. Phys. 2013, / 52, 040001. CrossRef
    6. Strukov, D. B.; Kohlstedt, H. Resistive switching phenomena in thin films: Materials, devices, and applications. / MRS Bull. 2012, / 37, 108鈥?14. CrossRef
    7. Yu, S.; Lee, B.; Wong, H. S. P. Metal oxide resistive switching memory. In / Functional Metal Oxide Nanostructures. Wu, J.; Cao, J.; Han, W.; Janotti, A.; Kim, H., Eds.; Springer: New York, 2012; pp. 303鈥?35. CrossRef
    8. Tanachutiwat, S.; Liu, M.; Wang, W. FPGA based on integration of CMOS and RRAM. / IEEE Trans. Very Large Scale Integr. VLSI Syst. 2011, / 19, 2023鈥?032. CrossRef
    9. Liauw, Y.; Zhang, Z.; Kim, W.; Gamal, A. E.; Wong, S. S. Nonvolatile 3D-FPGA with monolithically stacked RRAM-based configuration memory. In / Solid-State Circuits Conference Digest of Technical Papers (ISSCC), IEEE International, San Francisco, CA, USA, 2012, pp. 406鈥?08.
    10. Chang, T.; Yang, Y.; Lu, W. Building neuromorphic circuits with memristive devices. / IEEE Circuits Syst. Mag. 2013, / 13, 56鈥?3. CrossRef
    11. Seok Jeong, D.; Kim, I.; Ziegler, M.; Kohlstedt, H. Towards artificial neurons and synapses: A materials point of view. / RSC Adv. 2013, / 3, 3169鈥?183. CrossRef
    12. Waser, R.; Aono, M. Nanoionics-based resistive switching memories. / Nat. Mater. 2007, / 6, 833鈥?40. CrossRef
    13. Sakamoto, T.; Lister, K.; Banno, N.; Hasegawa, T.; Terabe, K.; Aono, M. Electronic transport in Ta2O5 resistive switch. / Appl. Phys. Lett. 2007, / 91, 092110. CrossRef
    14. Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J. K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. / Nat. Mater. 2011, / 10, 591鈥?95. CrossRef
    15. Sakamoto, T.; Tada, M.; Okamoto, K.; Hada, H. Electronic conduction mechanism in atom switch using polymer solid electrolyte. / IEEE T. Electron Dev. 2012, / 59, 3574鈥?577. CrossRef
    16. Pan, F.; Yin, S.; Subramanian, V. A detailed study of the forming stage of an electrochemical resistive switching memory by KMC simulation. / IEEE Electron Dev. Lett. 2011, / 32, 949鈥?51. CrossRef
    17. Yu, S. M.; Wong, H. S. P. Compact modeling of conducting-bridge random-access memory (CBRAM). / IEEE T. Electron Dev. 2011, / 58, 1352鈥?360. CrossRef
    18. Yang, Y.; Gao, P.; Gaba, S.; Chang, T.; Pan, X.; Lu, W. Observation of conducting filament growth in nanoscale resistive memories. / Nat. Commun. 2012, / 3, 732. CrossRef
    19. Xu, Z.; Bando, Y.; Wang, W.; Bai, X.; Golberg, D. Real-time / in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. / ACS Nano 2010, / 4, 2515鈥?522. CrossRef
    20. Joshi, U. S. Ion irradiation: A tool to understand oxide RRAM mechanism. / Radiat. Eff. Defects S. 2011, / 166, 724鈥?33. CrossRef
    21. Liu, Q.; Long, S.; Lv, H.; Wang, W.; Niu, J.; Huo, Z.; Chen, J.; Liu, M. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. / ACS Nano 2010, / 4, 6162鈥?168. CrossRef
    22. Sun, Q.; Gu, J.; Chen, L.; Peng, Z.; Wang P.; Ding, S.; Zhang, D. W. Controllable filament with electric field engineering for resistive switching uniformity. / IEEE Electron Dev. Lett. 2011, / 32, 1167鈥?169. CrossRef
    23. Bradley, J.; Chen, H.; Crawford, J.; Eckert, J.; Ernazarova, K.; Kurzeja, T.; Lin, M.; McGee, M.; Nadler, W.; Stephens, S. G. Creating electrical contacts between metal particles using directed electrochemical growth. / Nature 1997, / 389, 268鈥?71. CrossRef
    24. Hsu, K.; Ferreira, P.; Fang, N. Controlled directional growth of silver microwires on a solid electrolyte surface. / Appl. Phys. Lett. 2010, / 96, 024101. CrossRef
    25. Balberg, I.; Azulay, D.; Toker, D.; Millo, O. Percolation and tunneling in composite materials. / Int. J. Mod. Phys. B 2004, / 18, 2091鈥?121. CrossRef
    26. Chen, L.; Li, Q.; Guo, H.; Gao, L.; Xia, Y.; Yin, J.; Liu, Z. Monte Carlo simulation of the percolation in Ag30Ge17Se53 amorphous electrolyte films. / Appl. Phys. Lett. 2009, / 95, 242106. CrossRef
    27. Valov, I.; Linn, E.; Tappertzhofen, S.; Schmelzer, S.; van den Hurk, J.; Lentz, F.; Waser, R. Nanobatteries in redox-based resistive switches require extension of memristor theory. / Nat. Commun. 2013, / 4, 1771. CrossRef
    28. Bang, S.; Chung, T.; Kim, Y. Plasma enhanced chemical vapor deposition of silicon oxide films using TMOS/O2 gas and plasma diagnostics. / Thin Solid Films 2003, / 444, 125鈥?31. CrossRef
  • 作者单位:Xuezeng Tian (1)
    Lifen Wang (1)
    Jiake Wei (1)
    Shize Yang (1)
    Wenlong Wang (1)
    Zhi Xu (1)
    Xuedong Bai (1)

    1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
  • ISSN:1998-0000
文摘
Solid electrolyte based-resistive memories have been considered to be a potential candidate for future information technology with applications in non-volatile memory, logic circuits and neuromorphic computing. A conductive filament model has been generally accepted to be the underlying mechanism for the resistive switching. However, the growth dynamics of such conductive filaments is still not fully understood. Here, we explore the controllability of filament growth by correlating observations of the filament growth with the electric field distribution and several other factors. The filament growth behavior has been recorded using in situ transmission electron microscopy. By studying the real-time recorded filament growth behavior and morphologies, we have been able to simulate the electric field distribution in accordance with our observations. Other factors have also been shown to affect the filament growth, such as Joule heating and electrolyte infrastructure. This work provides insight into the controllable growth of conductive filaments and will help guide research into further functionalities of nanoionic resistive memories.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.