Ultrafast imaging the light-speed propagation of a focused femtosecond laser pulse in air and its ionized electron dynamics and plasma-induced pulse reshaping
详细信息    查看全文
  • 作者:Yanwu Yu ; Lan Jiang ; Qiang Cao ; Xueshong Shi ; Qingsong Wang…
  • 刊名:Applied Physics A: Materials Science & Processing
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:122
  • 期:3
  • 全文大小:1,598 KB
  • 参考文献:1.L. Jiang, P. Liu, X. Yan, N. Leng, C. Xu, H. Xiao, Y. Lu, High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains. Opt. Lett. 37, 2781–2783 (2012)ADS CrossRef
    2.K.H. Kim, J.G. Kim, S. Nozawa, T. Sato, K.Y. Oang, T.W. Kim, H. Ki, J. Jo, S. Park, C. Song, T. Sato, K. Ogawa, T. Togashi, K. Tono, M. Yabashi, T. Ishikawa, J. Kim, R. Ryoo, J. Kim, H. Ihee, S. Adachi, Direct observation of bond formation in solution with femtosecond X-ray scattering. Nature 518, 385–389 (2015)ADS CrossRef
    3.S. Bourquin, A.D. Aguirre, I. Hartl, P. Hsiung, T.H. Ko, J.G. Fujimoto, T.A. Birks, W.J. Wadsworth, U. Bünting, D. Kopf, Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd: glass laser and nonlinear fiber. Opt. Express 11, 3290–3297 (2003)ADS CrossRef
    4.R. Shah, S. Shah, S.J. Sengupta, Results of small incision lenticule extraction: all-in-one femtosecond laser refractive surgery. J. Cataract Refract. Surg. 37, 127–137 (2011)CrossRef
    5.J. Maysonnave, S. Huppert, F. Wang, S. Maero, C. Berger, W. de Heer, T.B. Norris, L.A. De Vaulchier, S. Dhillon, J. Tignon, R. Ferreira, J. Mangeney, Terahertz generation by dynamical photon drag effect in graphene excited by femtosecond optical pulses. Nano Lett. 14, 5797–5802 (2014)ADS CrossRef
    6.O. Wada, Femtosecond all-optical devices for ultrafast communication and signal processing. New J. Phys. 6, 183 (2004)ADS CrossRef
    7.S.L. Chin, S.A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V.P. Kandidov, O.G. Kosareva, H. Schroeder, The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges. Can. J. Phys. 83, 863–905 (2005)ADS CrossRef
    8.Y. Li, T. Xi, Z. Hao, Z. Zhang, X. Peng, K. Li, Z. Jin, Z. Zheng, Q. Yu, X. Lu, J. Zhang, Oval-like hollow intensity distribution of tightly focused femtosecond laser pulses in air. Opt. Express 15, 17973–17979 (2007)ADS CrossRef
    9.Z. Xu, X. Zhu, Y. Yu, N. Zhang, J. Zhao, Super-luminescent jet light generated by femtosecond laser pulses. Sci. Rep. 4, 3892 (2014)ADS
    10.T. Liu, Z. Hao, X. Gao, Z. Liu, J. Lin, Shadowgraph investigation of plasma shock wave evolution from Al target under 355-nm laser ablation. Chin. Phys. B 23, 085203 (2014)ADS CrossRef
    11.S. Tzortzakis, B. Prade, M. Franco, M. Franco, A. Mysyrowicz, Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air. Opt. Commun. 181, 123–127 (2000)ADS CrossRef
    12.X. Liu, X. Lu, X. Liu, T. Xi, F. Liu, J. Ma, J. Zhang, Tightly focused femtosecond laser pulse in air: from filamentation to breakdown. Opt. Express 18, 26007–26017 (2010)ADS CrossRef
    13.M. Centurion, Y. Pu, D. Psaltis, Holographic capture of femtosecond pulse propagation. J. Appl. Phys. 100, 063104 (2006)ADS CrossRef
    14.R.J. Nordstrom, Study of laser-induced plasma emission spectra of N2, O2, and ambient air in the region 350 nm to 950 nm. Appl. Spectrosc. 49, 1490–1499 (1995)ADS CrossRef
    15.X. Zhu, R. Fu, Emission spectra of micro plasma generated by fs laser pulses. Proc. SPIE 4914, 58–67 (2002)ADS CrossRef
    16.A. Kramida, Y. Ralchenko, J. Reader, NIST ASD Team (2014). NIST Atomic Spectra Database (ver. 5.2), [Online]. http://​physics.​nist.​gov/​asd [2015, August 5]. National Institute of Standards and Technology, Gaithersburg, MD
    17.L. Jiang, H.L. Tsai, Improved two-temperature model and its application in ultrashort laser heating of metal films. J. Heat Transfer 127, 1167–1173 (2005)CrossRef
    18.I. Apitz, A. vogel, Material ejection in nanosecond Er: YAG laser ablation of water, liver and skin. Appl. Phys. A 81, 329–338 (2005)ADS CrossRef
    19.X. Zeng, X.L. Mao, R. Greif, R.E. Russo, Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon. Appl. Phys. A 80, 237–241 (2005)ADS CrossRef
    20.N. Zhang, X. Zhu, J. Yang, X. Wang, M. Wang, Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum. Phys. Rev. Lett. 99, 2–5 (2007)
    21.R.G. Brewer, C.H. Lee, Self-trapping with picosecond light pulses. Phys. Rev. Lett. 21, 267 (1968)ADS CrossRef
    22.M.A. Duguay, J.W. Hansen, An ultrafast light gate. Appl. Phys. Lett. 15, 192 (1969)ADS CrossRef
    23.E.T.J. Nibbering, G. Grillon, M.A. Franco, B.S. Prade, A. Mysyrowicz, Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses. J. Opt. Soc. Am. B 14, 650 (1997)ADS CrossRef
    24.V. Loriot, E. Hertz, O. Faucher, B. Lavorel, Measurement of high order Kerr refractive index of major air components. Opt. Express 17, 13429 (2009)ADS CrossRef
    25.Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, Q. Gong, Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica. Opt. Lett. 30, 320–322 (2005)ADS CrossRef
    26.X. Mao, S.S. Mao, R.E. Russo, Imaging femtosecond laser-induced electronic excitation in glass. Appl. Phys. Lett. 82, 697 (2003)ADS CrossRef
    27.A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007)ADS CrossRef
    28.Z. Wu, H. Jiang, L. Luo, H. Guo, H. Yang, Q. Gong, Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica. Opt. Lett. 27, 448–450 (2002)ADS CrossRef
    29.W. Liu, S.L. Chin, O. Kosareva, I.S. Golubtsov, V.P. Kandidov, Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol). Opt. Commun. 225, 193–209 (2003)ADS CrossRef
    30.Q. Luo, W. Liu, S.L. Chin, Lasing action in air induced by ultra-fast laser filamentation. Appl. Phys. B 76, 337 (2003)ADS CrossRef
    31.D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S.L. Chin, A. Baltuška, Free-space nitrogen gas laser driven by a femtosecond filament. Phys. Rev. A 86, 033831 (2012)ADS CrossRef
    32.A. Dogariu, J.B. Michael, M.O. Scully, R.B. Miles, High-Gain Backward Lasing in Air. Science 331, 442 (2011)ADS CrossRef
    33.P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, M. Scully, Remotely induced atmospheric lasing. Appl. Phys. Lett. 98, 211102 (2011)ADS CrossRef
    34.M.N. Shneider, A. Baltuška, A.M. Zheltikov, Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization. J. Appl. Phys. 110, 083112 (2011)ADS CrossRef
    35.J. Ni, W. Chu, C. Jing, H. Zhang, B. Zeng, J. Yao, G. Li, H. Xie, C. Zhang, H. Xu, S.L. Chin, Y. Cheng, Z. Xu, Identification of the physical mechanism of generation of coherent N2 + emissions in air by femtosecond laser excitation. Opt. Express 21, 8746 (2013)ADS CrossRef
    36.Y. Liu, Y. Brelet, G. Point, A. Houard, A. Mysyrowicz, Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses. Opt. Express 21, 22791 (2013)ADS CrossRef
    37.G. Point, Y. Liu, Y. Brelet, S. Mitryukovskiy, P. Ding, A. Houard, A. Mysyrowicz, Lasing of ambient air with microjoule pulse energy pumped by a multi-terawatt infrared femtosecond laser. Opt. Lett. 39, 1725 (2014)ADS CrossRef
  • 作者单位:Yanwu Yu (1)
    Lan Jiang (1)
    Qiang Cao (1)
    Xueshong Shi (1)
    Qingsong Wang (1)
    Guoyan Wang (1)
    Yongfeng Lu (2)

    1. Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
    2. Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0511, USA
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Condensed Matter
    Optical and Electronic Materials
    Nanotechnology
    Characterization and Evaluation Materials
    Surfaces and Interfaces and Thin Films
    Operating Procedures and Materials Treatment
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0630
文摘
The light-speed propagation of a focused femtosecond (fs) laser pulse in air was recorded by a pump–probe shadowgraph imaging technique with femtosecond time resolution. The ultrafast dynamics of the laser-ionized electrons were studied, which revealed a strong reshaping of the laser field due to laser–air nonlinear interaction. The influence of laser fluence and focusing conditions on the pulse reshaping was studied, and it was found that: (1) double foci are formed due to the refocusing effect when the laser fluence is higher than 500 J/cm2 and the focusing numeric aperture (NA) is higher than 0.30; and (2) a higher NA focusing lens can better inhibit the prefocusing effect and nonlinear distortion in the Gaussian beam waist.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.