Construction of an environmental safe Bacillus thuringiensis engineered strain against Coleoptera
详细信息    查看全文
  • 作者:Yajun Yu ; Yihui Yuan ; Meiying Gao
  • 关键词:Bacillus thuringiensis ; Environmental safety ; Bt engineered strain ; Coleopteran
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:100
  • 期:9
  • 页码:4027-4034
  • 全文大小:544 KB
  • 参考文献:Agaisse H, Lereclus D (1996) STAB-SD: a Shine-Dalgarno sequence in the 5′ untranslated region is a determinant of mRNA stability. Mol Microbiol 20(3):633–643CrossRef PubMed
    Arantes O, Lereclus D (1991) Construction of cloning vectors for Bacillus thuringiensis. Gene 108(1):115–119CrossRef PubMed
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1995) Short protocols in molecular biology, 3rd edn. Wiley, Chichester
    Baum JA, Coyle DM, Gilbert MP, Jany CS, Gawron-Burke C (1990) Novel cloning vectors for Bacillus thuringiensis. Appl Environ Microbiol 56(11):3420–3428PubMed PubMedCentral
    Baum JA, Kakefuda M, Gawron-Burke C (1996) Engineering Bacillus thuringiensis bioinsecticides with an indigenous site-specific recombination system. Appl Environ Microbiol 62(12):4367–4373PubMed PubMedCentral
    Bouchard P, Grebennikov VV, Smith AB, Douglas H (2009) Biodiversity of Coleoptera. Insect Biodiversity: Science and Society:265–301
    Brantl S, Behnke D (1992a) The amount of RepR protein determines the copy number of plasmid pIP501 in Bacillus subtilis. J Bacteriol 174(16):5475–5478PubMed PubMedCentral
    Brantl S, Behnke D (1992b) Copy number control of the streptococcal plasmid pIP501 occurs at three levels. Nucleic Acids Res 20(3):395–400CrossRef PubMed PubMedCentral
    del Solar G, Giraldo R, Ruiz-Echevarria MJ, Espinosa M, Diaz-Orejas R (1998) Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62(2):434–464PubMed PubMedCentral
    Frankenhuyzen KV (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101(1):1–16CrossRef PubMed
    Gao M, Li R, Dai S, Li X, Fu J (1999) New coleopterancidai strains of Bacillus thuringiensis and production of coleopterancide. Wei Sheng Wu Xue Bao 39(6):515PubMed
    Gao M, Li R, Dai S, Wu Y, Yi D (2008) Diversity of Bacillus thuringiensis strains from soil in China and their pesticidal activities. Biol Control 44(3):380–388CrossRef
    He Y, Lv L, Kuang Z, Feng X, Chen H, Wu Y (2005) Effect of temperature and humidity on the virulence of beetle-derived Beauveria bassiana (Balsamo) Vuillemin (Deuteromycetes: Moniliales) against the daikon leaf beetle Phaedon brassicae Baly (Coleoptera: Chrysomelidae). Kun Chong Xue Bao 48(5):679–686
    He J, Shao X, Zheng H, Li M, Wang J, Zhang Q, Li L, Liu Z, Sun M, Wang S (2010) Complete genome sequence of Bacillus thuringiensis mutant strain BMB171. J Bacteriol 192(15):4074–4075CrossRef PubMed PubMedCentral
    Hug K (2008) Genetically modified organisms: do the benefits outweigh the risks? Medicina (Kaunas) 44(2):87–99
    Lambert B, Peferoen M (1992) Insecticidal promise of Bacillus thuringiensis. BioScience:112–122
    Lereclus D, Vallade M, Chaufaux J, Arantes O, Rambaud S (1992) Expansion of insecticidal host range of Bacillus thuringiensis by in vivo genetic recombination. Nat Biotechnol 10(4):418–421CrossRef
    Liu J, Yan G, Shu C, Zhao C, Liu C, Song F, Zhou L, Ma J, Zhang J, Huang D (2010) Construction of a Bacillus thuringiensis engineered strain with high toxicity and broad pesticidal spectrum against coleopteran insects. Appl Microbiol Biotechnol 87(1):243–249CrossRef PubMed
    Liu N, Li Y, Zhang R (2012) Invasion of Colorado potato beetle, Leptinotarsa decemlineata, in China: dispersal, occurrence, and economic impact. Entomol Exp Appl 143(3):207–217CrossRef
    Nazarian A, Jahangiri R, Jouzani GS, Seifinejad A, Soheilivand S, Bagheri O, Keshavarzi M, Alamisaeid K (2009) Coleopteran-specific and putative novel cry genes in Iranian native Bacillus thuringiensis collection. J Invertebr Pathol 102(2):101–109CrossRef PubMed
    Roh JY, Choi JY, Li MS, Jin BR, Je YH (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 17(4):547PubMed
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, vol 2. Cold spring harbor laboratory press, New York
    Sanchis V, Agaisse H, Chaufaux J, Lereclus D (1996) Construction of new insecticidal Bacillus thuringiensis recombinant strains by using the sporulation non-dependent expression system of cryIIIA and a site specific recombination vector. J Biotechnol 48(1–2):81–96CrossRef PubMed
    Sanchis V, Agaisse H, Chaufaux J, Lereclus D (1997) A recombinase-mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains. Appl Environ Microbiol 63(2):779–784PubMed PubMedCentral
    Sanchis V, Gohar M, Chaufaux J, Arantes O, Meier A, Agaisse H, Cayley J, Lereclus D (1999) Development and field performance of a broad-spectrum nonviable asporogenic recombinant strain of Bacillus thuringiensis with greater potency and UV resistance. Appl Environ Microbiol 65(9):4032–4039PubMed PubMedCentral
    Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler D, Dean D (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):775–806PubMed PubMedCentral
    Shu C, Liu R, Wang R, Zhang J, Feng S, Huang D, Song F (2007) Improving toxicity of Bacillus thuringiensis strain contains the cry8Ca gene specific to Anomala corpulenta larvae. Curr Microbiol 55(6):492–496CrossRef PubMed
    Shu C, Yan G, Wang R, Zhang J, Feng S, Huang D, Song F (2009a) Characterization of a novel cry8 gene specific to Melolonthidae pests: Holotrichia oblita and Holotrichia parallela. Appl Microbiol Biotechnol 84(4):701–707CrossRef PubMed
    Shu C, Yu H, Wang R, Fen S, Su X, Huang D, Zhang J, Song F (2009b) Characterization of two novel cry8 genes from Bacillus thuringiensis strain BT185. Curr Microbiol 58(4):389–392CrossRef PubMed
    Wang G, Zhang J, Song F, Wu J, Feng S, Huang D (2006) Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests. Appl Microbiol Biotechnol 72(5):924–930CrossRef PubMed
    Wang G, Zhang J, Song F, Gu A, Uwais A, Shao T, Huang D (2008) Recombinant Bacillus thuringiensis strain shows high insecticidal activity against Plutella xylostella and Leptinotarsa decemlineata without affecting nontarget species in the field. J Appl Microbiol 105(5):1536–1543CrossRef PubMed
    Wu L, Sun M, Yu Z (2000) A new resolution vector with cry1Ac10 gene based on Bacillus thuringiensis transposon Tn4430. Wei Sheng Wu Xue Bao 40(3):264–269PubMed
    Wu L, Sun M, Zhu C, Zhang L, Yu Z (2002) A novel resolution vector with Bacillus thuringiensis plasmid replicon ori44. Sheng Wu Gong Cheng Xue Bao 18(3):335–338PubMed
    Zhang J, Song F, Li C, Sun Z, Tan J, Huang D (2002) Cloning and expression of cry3Aa7 gene from Bacillus thuringiensis strain toxic to Coleopteran pests. Zhongguo Nongye Kexue 35(6):650–653
  • 作者单位:Yajun Yu (1)
    Yihui Yuan (1)
    Meiying Gao (1)

    1. Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Cloning of new toxic genes from Bacillus thuringiensis (Bt) and construction of Bt engineered strains are two key strategies for bio-control of coleopteran pests in agriculture and forestry. In this study, we cloned a new cry3Aa-type gene, cry3Aa8, from wild Bt strain YC-03 against coleopteran, and constructed a Bt engineered strain, ACE-38, containing insecticidal protein-encoding gene cry3Aa8. The engineered strain, with almost four times of Cry3Aa yield compared with strain YC-03, was an antibiotic marker-free strain. Though no selective pressure was presented in the medium, cry3Aa8 in the engineered strain ACE-38 remained stable. The yield of Cry3Aa by strain ACE-38 reached 2.09 mg/ml in the optimized fermentation medium. The activity of strain ACE-38 against Plagiodera versicolora was tested, and the LC50 of ACE-38 cultures in the optimized fermentation medium was 1.13 μl/ml. Strain ACE-38 is a non-antibiotic Bt engineered strain with high Chrysomelidae toxicity and exhibits good fermentation property. The modified indigenous site-specific recombination system constructed in this study might be useful for the construction of Bt engineered strains containing genes that cannot be expressed in the indigenous site-specific recombination system using plasmid pBMB1205R.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.