Youngia erythrocarpa, a newly discovered cadmium hyperaccumulator plant
详细信息    查看全文
  • 作者:Lijin Lin (1)
    Bo Ning (2)
    Ming’an Liao (1)
    Yajun Ren (1)
    Zhihui Wang (1)
    Yingjie Liu (2)
    Ji Cheng (1)
    Li Luo (1)
  • 关键词:Youngia erythrocarpa ; Cadmium ; Resistance ; Bioconcentration ; Hyperaccumulator ; Translocation
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:187
  • 期:1
  • 全文大小:183 KB
  • 参考文献:1. Adki, V. S., Jadhav, J. P., & Bapat, V. A. (2013). / Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant. / Environmental Science and Pollution Research, 20, 1173-180. CrossRef
    2. Bao, S. D. (2000). / Soil agrochemical analysis. Beijing: China Agriculture Press [in Chinese].
    3. Brooks, R. R. (1998). / Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. Oxford: CAB International.
    4. Brooks, R. R., Lee, J., Reeves, R. D., & Jaffre, T. (1977). Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. / Journal of Geochemical Exploration, 7, 49-7. CrossRef
    5. Chang, Q. (2013). “Cadmium rice-as a warning to mankind. / China Food, 11, 56-6 [in Chinese with English summary].
    6. Ghosh, M., & Singh, S. P. (2005). A comparative study of cadmium phytoextraction by accumulator and weed species. / Environmental Pollution, 133, 365-71. CrossRef
    7. Lin, L. J., Jin, Q., Liu, Y. J., Ning, B., Liao, M. A., & Luo, L. (2014). Screening of a new cadmium hyperaccumulator, / Galinsoga parviflora, from winter farmland weeds using the artificially-high soil cadmium concentration method. / Environmental Toxicology and Chemistry, 33(11), 2422-428. CrossRef
    8. Luka?ová Kuliková, Z., & Lux, A. (2010). Silicon influence on maize, / Zea mays L., hybrids exposed to cadmium treatment. / Bulletin of Environmental Contamination and Toxicology, 85(3), 243-50. CrossRef
    9. Maestri, E., Marmiroli, M., Visioli, G., & Marmiroli, N. (2010). Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. / Environmental and Experimental Botany, 68(1), 1-3. CrossRef
    10. McGrath, S. P., Zhao, F. J., & Lombi, E. (2002). Phytoremediation of metals, metalloids, and radionuclides. / Advances in Agronomy, 75, l-6.
    11. Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace-metals. / Nature, 333, 134-39. CrossRef
    12. Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G., & Gardea-Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. / International Journal of Biochemistry and Cell Biology, 41(8-), 1665-677. CrossRef
    13. Rastmanesh, F., Moore, F., & Keshavarzi, B. (2010). Speciation and phytoavailability of heavy metals in contaminated soils in Sarcheshmeh area, Kerman Province, Iran. / Bulletin of Environmental Contamination and Toxicology, 85(5), 515-19. CrossRef
    14. Reeves, R. D., & Baker, A. J. M. (2000). Metal accumulating plants. In I. Raskin & B. D. Ensley (Eds.), / Phytoremediation of toxic metals: using plant to clean up the environment. New York: Wiley.
    15. Shi, Z. (1997). Compositae. In X. X. Hu, C. S. Qian, & H. Y. Chen (Eds.), / Flora republicae popularis sinicae 80(1) (pp. 158-59). Beijing: Science Press of China [in Chinese].
    16. ?ottníková, A., Luná?ková, L., Masarovi?ová, E., Lux, A., & Stre?ko, V. (2003). Changes in the rooting and growth of willows and poplars induced by cadmium. / Biologia Plantarum, 46, 129-31. CrossRef
    17. Wang, Y. M. (2005). Soil heavy metal pollution and control. / Anhui Agricultural Science Bulletin, 1(7), 46-7 [in Chinese with English summary].
    18. Wei, S. H., Zhou, Q. X., & Liu, R. (2005a). Utilization of weed resource in the remediation of soils contaminated by heavy metals. / Journal of Natural Resources, 20(3), 432-40 [in Chinese with English summary].
    19. Wei, S. H., Zhou, Q. X., Wang, X., Zhang, K. S., Guo, G. L., & Ma Lena, Q. Y. (2005b). A newly-discovered Cd-hyperaccumulator / Solanum nigrum L. / Chinese Scienc
  • 作者单位:Lijin Lin (1)
    Bo Ning (2)
    Ming’an Liao (1)
    Yajun Ren (1)
    Zhihui Wang (1)
    Yingjie Liu (2)
    Ji Cheng (1)
    Li Luo (1)

    1. College of Horticulture, Sichuan Agricultural University, Ya’an, Sichuan, 625014, China
    2. College of Resource and Environment, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
  • ISSN:1573-2959
文摘
The farmland weed Youngia erythrocarpa has been found to have the basic characteristics of a cadmium (Cd) hyperaccumulator. This study carried out preliminary and further Cd concentration gradient experiments and field experiment using Y. erythrocarpa to confirm this fact. The results showed that the biomass and resistance coefficient of Y. erythrocarpa decreased, but the root/shoot ratio and the Cd content in roots and shoots increased with the increase in soil Cd concentration. The Cd content in shoots of Y. erythrocarpa exceeded 100?mg/kg when the soil Cd concentration was 25?mg/kg in the two concentration gradient experiments, up to the maxima of 293.25 and 317.87?mg/kg at 100?mg/kg soil Cd. Both the bioconcentration factor of the shoots and the translocation factor exceeded 1 in all Cd treatments. In the field experiment, the total Cd extraction by shoots was 0.934-.996?mg/m2 at soil Cd levels of 2.04-.89?mg/kg. Therefore, Y. erythrocarpa is a Cd hyperaccumulator that could be used to remediate Cd-contaminated farmland soil efficiently.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.