Hollow click-based porous organic polymers for heterogenization of [Ru(bpy)3]2+ through electrostatic interactions
详细信息    查看全文
  • 作者:Liuyi Li ; Caiyan Cui ; Wenyue Su ; Yangxin Wang ; Ruihu Wang
  • 关键词:porous organic polymers ; hollow ; heterogenization ; cationic metal complex ; catalysis
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:9
  • 期:3
  • 页码:779-786
  • 全文大小:2,693 KB
  • 参考文献:[1]Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568.CrossRef
    [2]Zhang, Y. G.; Riduan, S. N. Functional porous organic polymers for heterogeneous catalysis. Chem. Soc. Rev. 2012, 41, 2083–2094.CrossRef
    [3]Zou, X. Q.; Ren, H.; Zhu, G. S. Topology-directed design of porous organic frameworks and their advanced applications. Chem. Commun. 2013, 49, 3925–3936.CrossRef
    [4]Ma, H. P.; Li, B.; Zhang, L. M.; Han, D.; Zhu, G. S. Targeted synthesis of core–shell porous aromatic frameworks for selective detection of nitro aromatic explosives via fluorescence two-dimensional response. J. Mater. Chem. A 2015, 3, 19346–19352.CrossRef
    [5]Wang, W. L.; Zheng, A. M.; Zhao, P. Q.; Xia, C. G.; Li, F. W. Au-NHC@porous organic polymers: Synthetic control and its catalytic application in alkyne hydration reactions. ACS Catal. 2014, 4, 321–327.CrossRef
    [6]Lu, W. G.; Wei, Z. W.; Yuan, D. Q.; Tian, J.; Fordham, S.; Zhou, H.-C. Rational design and synthesis of porous polymer networks: Toward high surface area. Chem. Mater. 2014, 26, 4589–4597.CrossRef
    [7]Fang, Q. R.; Gu, S.; Zheng, J.; Zhuang, Z. B.; Qiu, S. L.; Yan, Y. S. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew. Chem., Int. Ed. 2014, 53, 2878–2882.CrossRef
    [8]Arab, P.; Parrish, E.; Islamoglu, T.; El-Kaderi, H. M. Synthesis and evaluation of porous azo-linked polymers for carbon dioxide capture and separation. J. Mater. Chem. A 2015, 3, 20586–20594.CrossRef
    [9]Fischer, S.; Schmidt, J.; Strauch, P.; Thomas, A. An anionic microporous polymer network prepared by the polymerization of weakly coordinating anions. Angew. Chem., Int. Ed. 2013, 52, 12174–12178.CrossRef
    [10]Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 2011, 133, 19816–19822.CrossRef
    [11]Xie, Z. G.; Wang, C.; deKrafft, K. E.; Lin, W. B. Highly stable and porous cross-linked polymers for efficient photocatalysis. J. Am. Chem. Soc. 2011, 133, 2056–2059.CrossRef
    [12]Chen, L.; Yang, Y.; Jiang, D. L. CMPs as scaffolds for constructing porous catalytic frameworks: A built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J. Am. Chem. Soc. 2010, 132, 9138–9143.CrossRef
    [13]Chan-Thaw, C. E.; Villa, A.; Katekomol, P.; Su, D. S.; Thomas, A.; Prati, L. Covalent triazine framework as catalytic support for liquid phase reaction. Nano Lett. 2010, 10, 537–541.CrossRef
    [14]Li, Y. S.; Shi, J. L. Hollow-structured mesoporous materials: Chemical synthesis, functionalization and applications. Adv. Mater. 2014, 26, 3176–3205.CrossRef
    [15]Kandambeth, S.; Venkatesh, V.; Shinde, D. B.; Kumari, S.; Halder, A.; Verma, S.; Banerjee, R. Self-templated chemically stable hollow spherical covalent organic framework. Nat. Commun. 2015, 6, 6786.CrossRef
    [16]Guan, B. Y.; Wang, T.; Zeng, S. J.; Wang, X.; An, D.; Wang, D. M.; Cao, Y.; Ma, D. X.; Liu, Y. L.; Huo, Q. S. A versatile cooperative template-directed coating method to synthesize hollow and yolk–shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors. Nano Res. 2014, 7, 246–262.CrossRef
    [17]Kang, N.; Park, J. H.; Jin, M. S.; Park, N.; Lee, S. M.; Kim, H. J.; Kim, J. M.; Son, S. U. Microporous organic network hollow spheres: Useful templates for nanoparticulate Co3O4 hollow oxidation catalysts. J. Am. Chem. Soc. 2013, 135, 19115–19118.CrossRef
    [18]Chun, J.; Kang, S.; Park, N.; Park, E. J.; Jin, X.; Kim, K. D.; Seo, H. O.; Lee, S. M.; Kim, H. J.; Kwon, W. H. et al. Metal–organic framework@microporous organic network: Hydrophobic adsorbents with a crystalline inner porosity. J. Am. Chem. Soc. 2014, 136, 6786–6789.CrossRef
    [19]Li, B. Y.; Yang, X. J.; Xia, L. L.; Majeed, M. I.; Tan, B. Hollow microporous organic capsules. Sci. Rep. 2013, 3, 2128.
    [20]Wang, C.; Xie, Z. G.; deKrafft, K. E.; Lin, W. B. Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 2011, 133, 13445–13454.CrossRef
    [21]Ashford, D. L.; Sherman, B. D.; Binstead, R. A.; Templeton, J. L.; Meyer, T. J. Electro-assembly of a chromophorecatalyst bilayer for water oxidation and photocatalytic water splitting. Angew. Chem., Int. Ed. 2015, 54, 4778–4781.CrossRef
    [22]Waki, M.; Maegawa, Y.; Hara, K.; Goto, Y.; Shirai, S.; Yamada, Y.; Mizoshita, N.; Tani, T.; Chun, W. J.; Muratsugu, S. et al. A solid chelating ligand: Periodic mesoporous organosilica containing 2,2'-bipyridine within the pore walls. J. Am. Chem. Soc. 2014, 136, 4003–4011.CrossRef
    [23]Sabater, S.; Mata, J. A.; Peris, E. Catalyst enhancement and recyclability by immobilization of metal complexes onto graphene surface by noncovalent interactions. ACS Catal. 2014, 4, 2038–2047.CrossRef
    [24]Genna, D. T.; Wong-Foy, A. G.; Matzger, A. J.; Sanford, M. S. Heterogenization of homogeneous catalysts in metal–organic frameworks via cation exchange. J. Am. Chem. Soc. 2013, 135, 10586–10589.CrossRef
    [25]Shakeri, M.; Roiban, L.; Yazerski, V.; Prieto, G.; Klein Gebbink, R. J. M.; de Jongh, P. E.; de Jong, K. P. Engineering and sizing nanoreactors to confine metal complexes for enhanced catalytic performance. ACS Catal. 2014, 4, 3791–3796.CrossRef
    [26]Lebedeva, M. A.; Chamberlain, T. W.; Schröder, M.; Khlobystov, A. N. New pathway for heterogenization of molecular catalysts by non-covalent interactions with carbon nanoreactors. Chem. Mater. 2014, 26, 6461–6466.CrossRef
    [27]Park, N.; Kang, D.; Ahn, M. C.; Kang, S.; Lee, S. M.; Ahn, T. K.; Jaung, J. Y.; Shin, H.-W.; Son, S. U. Hollow and sulfonated microporous organic polymers: Versatile platforms for non-covalent fixation of molecular photocatalysts. RSC Adv. 2015, 5, 47270–47274.CrossRef
    [28]Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.CrossRef
    [29]Holst, J. R.; Stöckel, E.; Adams, D. J.; Cooper, A. I. High surface area networks from tetrahedral monomers: Metalcatalyzed coupling, thermal polymerization, and “click” chemistry. Macromolecules 2010, 43, 8531–8538.CrossRef
    [30]Xie, L. H.; Suh, M. P. High CO2-capture ability of a porous organic polymer bifunctionalized with carboxy and triazole groups. Chem.—Eur. J. 2013, 19, 11590–11597.CrossRef
    [31]Plietzsch, O.; Schilling, C. I.; Grab, T.; Grage, S. L.; Ulrich, A. S.; Comotti, A.; Sozzani, P.; Muller, T.; Brase, S. Click chemistry produces hyper-cross-linked polymers with tetrahedral cores. New J. Chem. 2011, 35, 1577–1581.CrossRef
    [32]Pandey, P.; Farha, O. K.; Spokoyny, A. M.; Mirkin, C. A.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. T. A “click-based” porous organic polymer from tetrahedral building blocks. J. Mater. Chem. 2011, 21, 1700–1703.CrossRef
    [33]Bebensee, F.; Bombis, C.; Vadapoo, S. R.; Cramer, J. R.; Besenbacher, F.; Gothelf, K. V.; Linderoth, T. R. On-surface azide-alkyne cycloaddition on Cu(111): Does it “click” in ultrahigh vacuum? J. Am. Chem. Soc. 2013, 135, 2136–2139.CrossRef
    [34]Li, W.; Yang, J. P.; Wu, Z. X.; Wang, J. X.; Li, B.; Feng, S. S.; Deng, Y. H.; Zhang, F.; Zhao, D. Y. A versatile kineticscontrolled coating method to construct uniform porous TiO2 shells for multifunctional core–shell structures. J. Am. Chem. Soc. 2012, 134, 11864–11867.CrossRef
    [35]Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev. 2013, 113, 5322–5363.CrossRef
    [36]Schultz, D. M.; Yoon, T. P. Solar synthesis: Prospects in visible light photocatalysis. Science 2014, 343, 1239176.CrossRef
    [37]Ma, H. P.; Ren, H.; Zou, X. Q.; Meng, S.; Sun, F. X.; Zhu, G. S. Post-metalation of porous aromatic frameworks for highly efficient carbon capture from CO2 + N2 and CH4 + N2 mixtures. Polym. Chem. 2014, 5, 144–152.CrossRef
    [38]Zou, Y. Q.; Chen, J. R.; Liu, X. P.; Lu, L. Q.; Davis, R. L.; Jørgensen, K. A.; Xiao, W. J. Highly efficient aerobic oxidative hydroxylation of arylboronic acids: Photoredox catalysis using visible light. Angew. Chem., Int. Ed. 2012, 51, 784–788.CrossRef
    [39]Wang, C.; de Krafft, K. E.; Lin, W. B. Pt nanoparticles@photoactive metal–organic frameworks: Efficient hydrogen evolution via synergistic photoexcitation and electron injection. J. Am. Chem. Soc. 2012, 134, 7211–7214.CrossRef
    [40]Yin, Q. S.; Tan, J. M.; Besson, C.; Geletii, Y. V.; Musaev, D. G.; Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 2010, 328, 342–345.CrossRef
    [41]Ghosh, A.; Kumar, R. Efficient heterogeneous catalytic systems for enantioselective hydrogenation of prochiral carbonyl compounds. J. Catal. 2004, 228, 386–396.CrossRef
  • 作者单位:Liuyi Li (1) (2)
    Caiyan Cui (2)
    Wenyue Su (1)
    Yangxin Wang (2)
    Ruihu Wang (2)

    1. State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
    2. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
A facile approach for the heterogenization of transition metal catalysts using non-covalent interactions in hollow click-based porous organic polymers (H-CPPs) is presented. A catalytically active cationic species, [Ru(bpy)3]2+ (bpy = 2,2’-bipyridyl), was immobilized in H-CPPs via electrostatic interactions. The intrinsic properties of [Ru(bpy)3]2+ were well retained. The resulting Rucontaining hollow polymers exhibited excellent catalytic activity, enhanced stability, and good recyclability when used for the oxidative hydroxylation of 4-methoxyphenylboronic acid to 4-methoxyphenol under visible-light irradiation. The attractive catalytic performance mainly resulted from efficient mass transfer and the maintenance of the chemical properties of the cationic Ru complex in the H-CPPs.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.