Purification and biochemical characterisation of GlmU from Yersinia pestis
详细信息    查看全文
  • 作者:Delphine Patin (1)
    Marc Bayliss (2)
    Dominique Mengin-Lecreulx (1)
    Petra Oyston (2)
    Didier Blanot (1)

    1. Laboratoire des Enveloppes Bact茅riennes et Antibiotiques
    ; Institut de Biochimie et Biophysique Mol茅culaire et Cellulaire ; UMR 8619 CNRS ; B芒timent 430 ; Universit茅 Paris-Sud ; 91405 ; Orsay ; France
    2. Biomedical Sciences
    ; Dstl Porton Down ; Salisbury ; Wiltshire ; SP4 0JQ ; UK
  • 关键词:Acetyltransferase activity ; GlmU ; Thiol ; specific reagent ; UDP ; GlcNAc ; Uridyltransferase activity ; Yersinia pestis
  • 刊名:Archives of Microbiology
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:197
  • 期:3
  • 页码:371-378
  • 全文大小:345 KB
  • 参考文献:1. Achtman, M, Zurth, K, Morelli, G, Torrea, G, Guiyoule, A, Carniel, E (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 96: pp. 14043-14048 CrossRef
    2. Barreteau, H, Kova膷, A, Boniface, A, Sova, M, Gobec, S, Blanot, D (2008) Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 32: pp. 168-207 CrossRef
    3. Brown, K, Pompeo, F, Dixon, S, Mengin-Lecreulx, D, Cambillau, C, Bourne, Y (1999) Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: a paradigm for the related pyrophosphorylase superfamily. EMBO J 18: pp. 4096-4107 CrossRef
    4. Burton, E (2006) Antibiofilm activity of GlmU enzyme inhibitors against catheter-associated uropathogens. Antimicrob Agents Chemother 50: pp. 1835-1840 CrossRef
    5. Buurman, ET (2011) In vitro validation of acetyltransferase activity of GlmU as an antibacterial target in Haemophilus influenzae. J Biol Chem 286: pp. 40734-40742 CrossRef
    6. Craven, RB, Maupin, GO, Beard, ML, Quan, TJ, Barnes, AM (1993) Reported cases of human plague infections in the United States, 1970鈥?991. J Med Entomol 30: pp. 758-761 CrossRef
    7. Duffield, M, Cooper, I, McAlister, E, Bayliss, M, Ford, D, Oyston, P (2010) Predicting conserved essential genes in bacteria: in silico identification of putative drug targets. Mol BioSyst 6: pp. 2482-2489 CrossRef
    8. Galimand, M (1997) Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. N Engl J Med 337: pp. 677-680 CrossRef
    9. Gehring, AM, Lees, WJ, Mindiola, DJ, Walsh, CT, Brown, ED (1996) Acetyltransfer precedes uridylyltransfer in the formation of UDP-N-acetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli. Biochemistry 35: pp. 579-585 CrossRef
    10. Green, OM (2012) Inhibitors of acetyltransferase domain of N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyl transferase (GlmU). Part 1: hit to lead evaluation of a novel arylsulfonamide series. Bioorg Med Chem Lett 22: pp. 1510-1519 CrossRef
    11. Guiyoule, A (2001) Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis. Emerg Infect Dis 7: pp. 43-48 CrossRef
    12. Heymann, DL (2011) Emerging and re-emerging infectious diseases from plague and cholera to Ebola and AIDS: a potential for international spread that transcends the defences of any single country. J Conting Crisis Manag 13: pp. 29-31 CrossRef
    13. Hinnebusch, BJ, Erickson, DL (2008) Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr Top Microbiol Immunol 322: pp. 229-248
    14. Hinnebusch, BJ, Rosso, ML, Schwan, TG, Carniel, E (2002) High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut. Mol Microbiol 46: pp. 349-354 CrossRef
    15. Itoh, Y, Wang, X, Hinnebusch, BJ, Preston, JFI, Romeo, T (2005) Depolymerization of 尾-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 187: pp. 382-387 CrossRef
    16. Jagtap, PK (2012) Substrate-bound crystal structures reveal features unique to Mycobacterium tuberculosis N-acetyl-glucosamine 1-phosphate uridyltransferase and a catalytic mechanism for acetyl transfer. J Biol Chem 287: pp. 39524-39537 CrossRef
    17. Jagtap, PK, Verma, SK, Vithani, N, Bais, VS, Prakash, B (2013) Crystal structures identify an atypical two-metal-ion mechanism for uridyltransfer in GlmU: its significance to sugar nucleotidyl transferases. J Mol Biol 425: pp. 1745-1759 CrossRef
    18. Kostrewa, D, D鈥橝rcy, A, Takacs, B, Kamber, M (2001) Crystal structures of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase, GlmU, in apo form at 2.33 脜 resolution and in complex with UDP-N-acetylglucosamine and Mg2+ at 1.96 脜 resolution. J Mol Biol 305: pp. 279-289 CrossRef
    19. Li, Y, Zhou, Y, Ma, Y, Li, X (2011) Design and synthesis of novel cell wall inhibitors of Mycobacterium tuberculosis GlmM and GlmU. Carbohydr Res 346: pp. 1714-1720 CrossRef
    20. Mengin-Lecreulx, D, Heijenoort, J (1993) Identification of the glmU gene encoding N-acetylglucosamine-1-phosphate uridyltransferase in Escherichia coli. J Bacteriol 175: pp. 6150-6157
    21. Mengin-Lecreulx, D, Heijenoort, J (1994) Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis. J Bacteriol 176: pp. 5788-5795
    22. Meyer, KF (1950) Modern therapy of plague. J Am Med Assoc 144: pp. 982-985 CrossRef
    23. Miller, JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor
    24. Min, J, Lin, D, Zhang, Q, Zhang, J, Yu, Z (2012) Structure-based virtual screening of novel inhibitors of the uridyltransferase activity of Xanthomonas oryzae pv. oryzae GlmU. Eur J Med Chem 53: pp. 150-158 CrossRef
    25. Mochalkin, I (2007) Characterization of substrate binding and catalysis in the potential antibacterial target N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). Protein Sci 16: pp. 2657-2666 CrossRef
    26. Mochalkin, I (2008) Structure of a small-molecule inhibitor complexed with GlmU from Haemophilus influenzae reveals an allosteric binding site. Protein Sci 17: pp. 577-582 CrossRef
    27. Nocek B, Kuhn B, Anderson WF, Joachimiak A (2012) Crystal structure of / Yersinia pestis GlmU in complex with alpha-D-glucosamine 1-phosphate (GP1). http://www.rcsb.org/explore/explore.do?structureId=4FCE
    28. Olsen, LR, Roderick, SL (2001) Structure of the Escherichia coli GlmU pyrophosphorylase and acetyltransferase active sites. Biochemistry 40: pp. 1913-1921 CrossRef
    29. Olsen, LR, Vetting, MW, Roderick, SL (2007) Structure of the E. coli bifunctional GlmU acetyltransferase active site with substrates and products. Protein Sci 16: pp. 1230-1235 CrossRef
    30. Oyston, PC, Williamson, ED (2013) Prophylaxis and therapy of plague. Expert Rev Anti Infect Ther 11: pp. 817-829 CrossRef
    31. Parikh, A, Verma, SK, Khan, S, Prakash, B, Nandicoori, VK (2009) PknB-mediated phosphorylation of a novel substrate, N-acetylglucosamine-1-phosphate uridyltransferase, modulates its acetyltransferase activity. J Mol Biol 386: pp. 451-464 CrossRef
    32. Pereira, MP, Blanchard, JE, Murphy, C, Roderick, SL, Brown, ED (2009) High-throughput screening identifies novel inhibitors of the acetyltransferase activity of Escherichia coli GlmU. Antimicrob Agents Chemother 53: pp. 2306-2311 CrossRef
    33. Pompeo, F, Heijenoort, J, Mengin-Lecreulx, D (1998) Probing the role of cysteine residues in glucosamine-1-phosphate acetyltransferase activity of the bifunctional GlmU protein from Escherichia coli: site-directed mutagenesis and characterization of the mutant enzymes. J Bacteriol 180: pp. 4799-4803
    34. Pompeo, F, Bourne, Y, Heijenoort, J, Fassy, F, Mengin-Lecreulx, D (2001) Dissection of the bifunctional Escherichia coli N-acetylglucosamine-1-phosphate uridyltransferase enzyme into autonomously functional domains and evidence that trimerization is absolutely required for glucosamine-1-phosphate acetyltransferase activity and cell growth. J Biol Chem 276: pp. 3833-3839 CrossRef
    35. Press, WH, Flannery, BP, Teukolsky, SA, Vetterling, WT (1986) Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge
    36. Rosenzweig, JA (2011) Progress on plague vaccine development. Appl Microbiol Biotechnol 91: pp. 265-286 CrossRef
    37. Singh, VK, Das, K, Seshadri, K (2012) Kinetic modelling of GlmU reactions鈥攑rioritization of reaction for therapeutic application. PLoS One 7: pp. e43969 CrossRef
    38. Sivaraman, J, Sauv茅, V, Matte, A, Cygler, M (2002) Crystal structure of Escherichia coli glucose-1-phosphate thymidylyltransferase (RffH) complexed with dTTP and Mg2+. J Biol Chem 277: pp. 44214-44219 CrossRef
    39. Stokes, SS (2012) Inhibitors of the acetyltransferase domain of N-acetylglucosamine-1-phosphate-uridylyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). Part 2: optimization of physical properties leading to antibacterial aryl sulfonamides. Bioorg Med Chem Lett 22: pp. 7019-7023 CrossRef
    40. Tran, AT, Wen, D, West, NP, Baker, EN, Britton, WJ, Payne, RJ (2013) Inhibition studies on Mycobacterium tuberculosis N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). Org Biomol Chem 11: pp. 8113-8126 CrossRef
    41. Urich, SK, Chalcraft, L, Schriefer, ME, Yockey, BM, Petersen, JM (2012) Lack of antimicrobial resistance in Yersinia pestis isolates from 17 countries in the Americas, Africa, and Asia. Antimicrob Agents Chemother 56: pp. 555-558 CrossRef
    42. Yin, J, Garen, CR, Cherney, MM, Cherney, LT, James, MN (2008) Expression, purification and preliminary crystallographic analysis of N-acetylglucosamine-1-phosphate uridylyltransferase from Mycobacterium tuberculosis. Acta Crystallogr, Sect F Struct Biol Cryst Commun 64: pp. 805-808 CrossRef
    43. Zhang, W (2008) Expression, essentiality, and a microtiter plate assay for mycobacterial GlmU, the bifunctional glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase. Int J Biochem Cell Biol 40: pp. 2560-2571 CrossRef
    44. Zhang R, Gu M, Anderson W, Joachimiak A (2009a) The crystal structure of the bifunctional / N-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase from / Yersinia pestis CO92. http://www.rcsb.org/explore/explore.do?structureId=3FWW
    45. Zhang, Z, Bulloch, EM, Bunker, RD, Baker, EN, Squire, CJ (2009) Structure and function of GlmU from Mycobacterium tuberculosis. Acta Crystallogr D Biol Crystallogr 65: pp. 275-283 CrossRef
    46. Zhou, Y, Xin, Y, Sha, S, Ma, Y (2011) Kinetic properties of Mycobacterium tuberculosis bifunctional GlmU. Arch Microbiol 193: pp. 751-757 CrossRef
    47. Zhou, Y, Yu, W, Zheng, Q, Xin, Y, Ma, Y (2012) Identification of amino acids involved in catalytic process of M. tuberculosis GlmU acetyltransferase. Glycoconj J 29: pp. 297-303 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Microbial Ecology
    Biochemistry
    Cell Biology
    Biotechnology
    Ecology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-072X
文摘
Antibiotic resistance has emerged as a real threat to mankind, rendering many compounds ineffective in the fight against bacterial infection, including for significant diseases such as plague caused by Yersinia pestis. Essential genes have been identified as promising targets for inhibiting with new classes of compounds. Previously, the gene encoding the bifunctional UDP-N-acetylglucosamine pyrophosphorylase/glucosamine-1-phosphate N-acetyltransferase enzyme GlmU was confirmed as an essential gene in Yersinia. As a step towards exploiting this target for antimicrobial screening, we undertook a biochemical characterisation of the Yersinia GlmU. Effects of pH and magnesium concentration on the acetyltransferase and uridyltransferase activities were analysed, and kinetic parameters were determined. The acetyltransferase activity, which is strongly increased in the presence of reducing agent, was shown to be susceptible to oxidation and thiol-specific reagents.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.