Backbone structure of Yersinia pestis Ail determined in micelles by NMR-restrained simulated annealing with implicit membrane solvation
详细信息    查看全文
  • 作者:Francesca M. Marassi ; Yi Ding ; Charles D. Schwieters…
  • 关键词:Ail ; Yersinia pestis ; Membrane protein ; Structure ; NMR ; Implicit solvation
  • 刊名:Journal of Biomolecular NMR
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:63
  • 期:1
  • 页码:59-65
  • 全文大小:717 KB
  • 参考文献:Bartra SS, Styer KL, O鈥橞ryant DM, Nilles ML, Hinnebusch BJ, Aballay A, Plano GV (2008) Resistance of Yersinia pestis to complement-dependent killing is mediated by the Ail outer membrane protein. Infect Immun 76(2):612鈥?22. doi:10.鈥?128/鈥婭AI.鈥?1125-07 CrossRef
    Bermejo GA, Clore GM, Schwieters CD (2012) Smooth statistical torsion angle potential derived from a large conformational database via adaptive kernel density estimation improves the quality of NMR protein structures. Protein Sci 21(12):1824鈥?836. doi:10.鈥?002/鈥媝ro.鈥?163 CrossRef
    Brubaker RR (2004) The recent emergence of plague: a process of felonious evolution. Microb Ecol 47(3):293鈥?99. doi:10.鈥?007/鈥媠00248-003-1022-y CrossRef
    Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66(Pt 1):12鈥?1. doi:10.鈥?107/鈥婼090744490904207鈥? CrossRef
    Clore GM, Gronenborn AM (1989) Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy. Crit Rev Biochem Mol Biol 24(5):479鈥?64CrossRef
    Cornelis GR (2000) Molecular and cell biology aspects of plague. Proc Natl Acad Sci USA 97(16):8778鈥?783CrossRef ADS
    de Planque MR, Killian JA (2003) Protein-lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring. Mol Membr Biol 20(4):271鈥?84. doi:10.鈥?080/鈥?968768031000160鈥?352 CrossRef
    DeLano WL (2005) PyMol. https://鈥媤ww.鈥媝ymol.鈥媜rg
    Ding Y, Fujimoto LM, Yao Y, Marassi FM (2015a) Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation. J Biomol NMR 61(3鈥?):275鈥?86. doi:10.鈥?007/鈥媠10858-014-9893-4 CrossRef
    Ding Y, Fujimoto LM, Yao Y, Plano GV, Marassi FM (2015b) Influence of the lipid membrane environment on structure and activity of the outer membrane protein Ail from Yersinia pestis. Biochim Biophys Acta 1842(2):712鈥?20. doi:10.鈥?016/鈥媕.鈥媌bamem.鈥?014.鈥?1.鈥?21 CrossRef
    Doreleijers JF, Sousa da Silva AW, Krieger E, Nabuurs SB, Spronk CA, Stevens TJ, Vranken WF, Vriend G, Vuister GW (2012) CING: an integrated residue-based structure validation program suite. J Biomol NMR 54(3):267鈥?83. doi:10.鈥?007/鈥媠10858-012-9669-7 CrossRef
    Felek S, Tsang TM, Krukonis ES (2010) Three Yersinia pestis adhesins facilitate Yop delivery to eukaryotic cells and contribute to plague virulence. Infect Immun 78(10):4134鈥?150. doi:10.鈥?128/鈥婭AI.鈥?0167-10 CrossRef
    Fox DA, Larsson P, Lo RH, Kroncke BM, Kasson PM, Columbus L (2014) Structure of the Neisserial outer membrane protein Opa(6)(0): loop flexibility essential to receptor recognition and bacterial engulfment. J Am Chem Soc 136(28):9938鈥?946. doi:10.鈥?021/鈥媕a503093y CrossRef
    Gong XM, Ding Y, Yu J, Yao Y, Marassi FM (2015) Structure of the Na, K-ATPase regulatory protein FXYD2b in micelles: implications for membrane-water interfacial arginines. Biochim Biophys Acta 1848(1 Pt B):299鈥?06. doi:10.鈥?016/鈥媕.鈥媌bamem.鈥?014.鈥?4.鈥?21 CrossRef
    Hinnebusch BJ, Jarrett CO, Callison JA, Gardner D, Buchanan SK, Plano GV (2011) Role of the Yersinia pestis Ail protein in preventing a protective polymorphonuclear leukocyte response during bubonic plague. Infect Immun. doi:10.鈥?128/鈥婭AI.鈥?5307-11
    Ho DK, Skurnik M, Blom AM, Meri S (2014) Yersinia pestis Ail recruitment of C4b-binding protein leads to factor I-mediated inactivation of covalently and noncovalently bound C4b. Eur J Immunol 44(3):742鈥?51. doi:10.鈥?002/鈥媏ji.鈥?01343552 CrossRef
    Kleinschmidt JH (2015) Folding of beta-barrel membrane proteins in lipid bilayers鈥攗nassisted and assisted folding and insertion. Biochim Biophys Acta. doi:10.鈥?016/鈥媕.鈥媌bamem.鈥?015.鈥?5.鈥?04
    Kolodziejek AM, Schnider DR, Rohde HN, Wojtowicz AJ, Bohach GA, Minnich SA, Hovde CJ (2010) Outer membrane protein X (Ail) contributes to Yersinia pestis virulence in pneumonic plague and its activity is dependent on the lipopolysaccharide core length. Infect Immun 78(12):5233鈥?243. doi:10.鈥?128/鈥婭AI.鈥?0783-10 CrossRef
    Kucerka N, Nieh MP, Katsaras J (2011) Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim Biophys Acta 1808(11):2761鈥?771. doi:10.鈥?016/鈥媕.鈥媌bamem.鈥?011.鈥?7.鈥?22 CrossRef
    Lazaridis T (2003) Effective energy function for proteins in lipid membranes. Proteins 52(2):176鈥?92. doi:10.鈥?002/鈥媝rot.鈥?0410 CrossRef
    Lazaridis T (2005) Structural determinants of transmembrane 尾-barrels. J Chem Theory Comput 1(4):716鈥?22. doi:10.鈥?021/鈥媍t050055x CrossRef
    Lazaridis T, Karplus M (1999) Effective energy function for proteins in solution. Proteins 35(2):133鈥?52. doi:10.鈥?002/鈥?SICI)1097-0134(19990501)35:鈥?<133:鈥婣ID-PROT1>3.鈥?.鈥婥O;2-N CrossRef
    Luzzati V, Husson F (1962) The structure of the liquid-crystalline phasis of lipid-water systems. J Cell Biol 12:207鈥?19CrossRef
    Marsh D (2013) Handbook of lipid bilayers. 2nd edn. CRC Press, Boca Raton
    Miller VL, Bliska JB, Falkow S (1990) Nucleotide sequence of the Yersinia enterocolitica Ail gene and characterization of the Ail protein product. J Bacteriol 172(2):1062鈥?069
    Miller VL, Beer KB, Heusipp G, Young BM, Wachtel MR (2001) Identification of regions of Ail required for the invasion and serum resistance phenotypes. Mol Microbiol 41(5):1053鈥?062CrossRef
    Mouritsen OG, Bloom M (1984) Mattress model of lipid-protein interactions in membranes. Biophys J 46(2):141鈥?53. doi:10.鈥?016/鈥婼0006-3495(84)84007-2 CrossRef
    Nagle JF (2013) Introductory lecture: basic quantities in model biomembranes. Faraday Discuss 161:11鈥?9 (discussion 113鈥?50) CrossRef ADS
    Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469(3):159鈥?95CrossRef
    Nilges M, Gronenborn AM, Brunger AT, Clore GM (1988) Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Protein Eng 2(1):27鈥?8CrossRef
    Perry RD, Fetherston JD (1997) Yersinia pestis鈥攅tiologic agent of plague. Clin Microbiol Rev 10(1):35鈥?6
    Schwieters CD, Clore GM (2001) Internal coordinates for molecular dynamics and minimization in structure determination and refinement. J Magn Reson 152(2):288鈥?02CrossRef ADS
    Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160(1):65鈥?3CrossRef ADS
    Schwieters CD, Kuszewski JJ, Marius Clore G (2006) Using Xplor, 脛矛NIH for NMR molecular structure determination. Prog Nucl Magn Reson Spectrosc 48(1):47鈥?2. doi:10.鈥?016/鈥媕.鈥媝nmrs.鈥?005.鈥?0.鈥?01 CrossRef
    Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56(3):227鈥?41. doi:10.鈥?007/鈥媠10858-013-9741-y CrossRef
    Shi L, Traaseth NJ, Verardi R, Cembran A, Gao J, Veglia G (2009) A refinement protocol to determine structure, topology, and depth of insertion of membrane proteins using hybrid solution and solid-state NMR restraints. J Biomol NMR 44(4):195鈥?05. doi:10.鈥?007/鈥媠10858-009-9328-9 CrossRef
    Teriete P, Franzin CM, Choi J, Marassi FM (2007) Structure of the Na, K-ATPase regulatory protein FXYD1 in micelles. Biochemistry 46(23):6774鈥?783. doi:10.鈥?021/鈥媌i700391b CrossRef
    Tian Y, Schwieters CD, Opella SJ, Marassi FM (2014) A practical implicit solvent potential for NMR structure calculation. J Magn Reson 243:54鈥?4. doi:10.鈥?016/鈥媕.鈥媕mr.鈥?014.鈥?3.鈥?11 CrossRef ADS
    Tian Y, Schwieters CD, Opella SJ, Marassi FM (2015) A practical implicit membrane potential for NMR structure calculations of membrane proteins. Biophys J (in press)
    Tsang TM, Felek S, Krukonis ES (2010) Ail binding to fibronectin facilitates Yersinia pestis binding to host cells and Yop delivery. Infect Immun 78(8):3358鈥?368. doi:10.鈥?128/鈥婭AI.鈥?0238-10 CrossRef
    Tsang TM, Annis DS, Kronshage M, Fenno JT, Usselman LD, Mosher DF, Krukonis ES (2012) Ail protein binds ninth type III fibronectin repeat (9FNIII) within central 120-kDa region of fibronectin to facilitate cell binding by Yersinia pestis. J Biol Chem 287(20):16759鈥?6767. doi:10.鈥?074/鈥媕bc.鈥婱112.鈥?58978 CrossRef
    Tsang TM, Wiese JS, Felek S, Kronshage M, Krukonis ES (2013) Ail proteins of Yersinia pestis and Y. pseudotuberculosis have different cell binding and invasion activities. PLoS ONE 8(12):e83621. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?083621 CrossRef ADS
    Versace RE, Lazaridis T (2015) Modeling Protein-Micelle Systems in Implicit Water. J Phys Chem B. doi:10.鈥?021/鈥媋cs.鈥媕pcb.鈥?b00171
    Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph聽8(1):52鈥?6CrossRef
    Vriend G, Sander C (1993) Quality control of protein models: directional atomic contact analysis. J Appl Crystallogr 26(1):47鈥?0. doi:10.鈥?107/鈥婼002188989200824鈥? CrossRef
    Word JM, Lovell SC, LaBean TH, Taylor HC, Zalis ME, Presley BK, Richardson JS, Richardson DC (1999) Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J Mol Biol 285(4):1711鈥?733. doi:10.鈥?006/鈥媕mbi.鈥?998.鈥?400 CrossRef
    Xu C, Gagnon E, Call ME, Schnell JR, Schwieters CD, Carman CV, Chou JJ, Wucherpfennig KW (2008) Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 135(4):702鈥?13. doi:10.鈥?016/鈥媕.鈥媍ell.鈥?008.鈥?9.鈥?44 CrossRef
    Yamashita S, Lukacik P, Barnard TJ, Noinaj N, Felek S, Tsang TM, Krukonis ES, Hinnebusch BJ, Buchanan SK (2011) Structural insights into Ail-mediated adhesion in Yersinia pestis. Structure聽19(11):1672鈥?682. doi:10.鈥?016/鈥媕.鈥媠tr.鈥?011.鈥?8.鈥?10 CrossRef
  • 作者单位:Francesca M. Marassi (1)
    Yi Ding (1)
    Charles D. Schwieters (2)
    Ye Tian (1)
    Yong Yao (1)

    1. Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
    2. Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Building 12A, Bethesda, MD, 20892-5624, USA
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Biophysics and Biomedical Physics
    Polymer Sciences
    Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-5001
文摘
The outer membrane protein Ail (attachment invasion locus) is a virulence factor of Yersinia pestis that mediates cell invasion, cell attachment and complement resistance. Here we describe its three-dimensional backbone structure determined in decyl-phosphocholine (DePC) micelles by NMR spectroscopy. The NMR structure was calculated using the membrane function of the implicit solvation potential, eefxPot, which we have developed to facilitate NMR structure calculations in a physically realistic environment. We show that the eefxPot force field guides the protein towards its native fold. The resulting structures provide information about the membrane-embedded global position of Ail, and have higher accuracy, higher precision and improved conformational properties, compared to the structures calculated with the standard repulsive potential. Keywords Ail Yersinia pestis Membrane protein Structure NMR Implicit solvation
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.