Solubility and solution rheology of acrylamide-sulfobetaine copolymers
详细信息    查看全文
  • 作者:Tao Ye ; Yihu Song ; Qiang Zheng
  • 关键词:Acrylamide ; sulfobetaine copolymers ; Critical salt concentration (CSC) ; Solubility ; Rheology
  • 刊名:Colloid & Polymer Science
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:292
  • 期:9
  • 页码:2185-2195
  • 全文大小:1,187 KB
  • 参考文献:1. Kudaibergenov S, Jaeger W, Laschewsky A (2006) Polymeric betaines: synthesis, characterization, and application. In: Supramolecular polymers polymeric betains oligomers, p 157-24
    2. Xuan F, Liu J (2009) Preparation, characterization and application of zwitterionic polymers and membranes: current developments and perspective. Polym Int 58(12):1350-361 CrossRef
    3. Singh PK, Singh VK, Singh M (2007) Zwitterionic polyelectrolytes: a review. E-Polymers
    4. Kudaibergenov SE, Nuraje N, Khutoryanskiy VV (2012) Amphoteric nano-, micro-, and macrogels, membranes, and thin films. Soft Matter 8(36):9302-321 CrossRef
    5. Lowe AB, McCormick CL (2002) Synthesis and solution properties of zwitterionic polymers. Chem Rev 102(11):4177-189 CrossRef
    6. Hart R, Timmerman D (1958) New polyampholytes: the polysulfobetaines. J Polym Sci 28(118):638-40 CrossRef
    7. Salamone JC, Volksen W, Olson AP, Israel SC (1978) Aqueous-solution properties of a poly(vinyl imidazolium sulfobetaine). Polymer 19(10):1157-162 CrossRef
    8. Soto VMM, Galin JC (1984) Poly(sulphopropylbetaines). 2. Dilute-solution properties. Polymer 25(2):254-62 CrossRef
    9. Schulz DN et al (1986) Phase-behavior and solution properties of sulfobetaine polymers. Polymer 27(11):1734-742 CrossRef
    10. Soto VMM et al (1984) Solid-state properties of polysulphopropylbetaines. Plast Eng 40(3):56-6
    11. Galin M et al (1987) Poly(sulfopropylbetaines). 3. Bulk properties. Polymer 28(11):1937-944 CrossRef
    12. Velasquez DL, Galin JC (1986) Microenvironment polarity of macromolecules in solution and in the condensed state. 1. Solvatochromic approach in dilute-solution. Macromolecules 19(4):1096-105 CrossRef
    13. Zheng YL, Knoesel R, Galin JC (1987) Poly sulfopropylbetaines). 4. Binding-properties towards reporter anionic probes and local polarity close to the zwitterionic chain in aqueous-solution. Polymer 28(13):2297-303 CrossRef
    14. Mathis A, Zheng YL, Galin JC (1986) Sulfonatopropylbetaine random copolymers—zwitterionic analogs of ionomers. Makromol Chem-Rapid Commun 7(6):333-37 CrossRef
    15. Zheng YL, Galin M, Galin JC (1988) Random ethylacrylate sulfonatopropylbetaine copolymers. 1. Synthesis and characterization. Polymer 29(4):724-30 CrossRef
    16. Bazuin CG et al (1989) Random ethyl acrylate sulfonatopropylbetaine copolymers. 2. Dynamic mechanical-properties. Polymer 30(4):654-61 CrossRef
    17. Mathis A, Zheng YL, Galin JC (1991) Random ethylacrylate zwitterionic copolymers. 3. Microphase separation as a function of the zwitterion structure. Polymer 32(17):3080-085 CrossRef
    18. Ehrmann M, Galin JC (1992) Statistical normal-butyl acrylate sulphonato-propylbetaine copolymers. 1. Synthesis and molecular characterization. Polymer 33(4):859-65 CrossRef
    19. Ehrmann M et al (1992) Statistical normal-butyl acrylate (sulfopropyl)ammonium betaine copolymers. 2. Structural studies. Macromolecules 25(8):2253-261 CrossRef
    20. Ehrmann M, Galin JC, Meurer B (1993) Statistical n-butyl acrylate sulfopropyl betaine copolymers. 3. Domain size determination by solid-state nmr-spectroscopy. Macromolecules 26(5):988-93 CrossRef
    21. Ehrmann M et al (1993) Statistical n-butyl acrylate (sulfopropyl)ammonium betaine copolymers. 4. Dynamic-mechanical properties. Macromolecules 26(18):4910-918 CrossRef
    22. Galin M, Mathis A, Galin JC (1993) Statistical n-butyl acrylate (sulfopropyl)ammonium betaine copolymers. 5. Plasticization studies. Macromolecules 26(18):4919-927 CrossRef
    23. Donovan MS et al (2002) Controlled/“living-polymerization of sulfobetaine monomers directly in aqueous media via RAFT. Macromolecules 35(23):8663-666 CrossRef
    24. Ezell RG, Lowe AB, McCormick CL (2006) Synthetic polyzwitterions: water-soluble copolymers and terpolymers. In: Lowe AB, McCormick CL (eds) Polyelectrolytes and polyzwitterions: synthesis, properties, and applications, p 47-3
    25. Lowe AB, McCormick CL (2006) Synthesis, aqueous solution properties, and biomedical application of polymeric betaines. In: Lowe AB, McCormick CL (eds) Polyelectrolytes and polyzwitterions: synthesis, properties, and applications, p 65-8
    26. Armentrout RS, McCormick CL (2000) Water soluble polymers. 76. Electrolyte responsive cyclocopolymers with sulfobetaine units exhibiting polyelectrolyte or polyampholyte behavior in aqueous media. Macromolecules 33(2):419-24 CrossRef
    27. Donovan MS et al (2003) Sulfobetaine-containing diblock and triblock copolymers via reversible addition-fragmentation chain transfer polymerization in aqueous media. J Polym Sci A Polym Chem 41(9):1262-281 CrossRef
    28. Lee WF, Chen YM (2001) Poly(sulfobetaine)s and corresponding cationic polymers. VIII. Synthesis and aqueous solution properties of a cationic poly(methyl iodide quaternil styrene-N, N-dimethylaminopropyl maleamidic acid) copolymer. J Appl Polym Sci 80(10):1619-626 CrossRef
    29. Lee WF, Huang GY (1996) Poly(sulfobetaine)s and corresponding cationic polymers. 5. Synthesis and dilute aqueous solution properties of poly(sulfobetaine)s derived from acrylamide maleic anhydride copolymer. Polymer 37(19):4389-395 CrossRef
    30. Lee WF, Lee CH (1997) Poly(sulfobetaine)s and corresponding cationic polymers. 3. Synthesis and dilute aqueous solution properties of poly(sulfobetaine)s derived from styrene-maleic anhydride. Polymer 38(4):971-79 CrossRef
    31. Lee WF, Chen YM (2003) Poly(sulfobetaine)s and corresponding cationic polymers. IX. Synthesis and aqueous solution properties of zwitterionic poly(sulfobetaine) derived from a styrene-N, N-dimethylaminopropyl maleamidic acid copolymer. J Appl Polym Sci 89(7):1884-889 CrossRef
    32. Lee WF, Chen YM (2004) Poly(sulfobetaine)s and corresponding cationic polymers. X. Viscous properties of zwitterionic poly(sulfobetaine) derived from styrene-(N, N-dimethylaminopropyI maleamidic acid) copolymer in aqueous salt solutions. J Appl Polym Sci 91(2):726-34 CrossRef
    33. Lee WF, Hwong GY (1996) Polysulfobetaines and corresponding cationic polymers. 4. Synthesis and aqueous solution properties of cationic poly(MIQSDMAPM). J Appl Polym Sci 59(4):599-08 CrossRef
    34. Lee WF, Huang GY (1996) Polysulfobetaines and corresponding cationic polymers. 6. Synthesis and aqueous solution properties of cationic poly(methyl iodide quaternized acrylamide-N, N-dimethylaminopropylmaleimide copolymer) poly(MIQADMAPM). J Appl Polym Sci 60(2):187-99 CrossRef
    35. Lee WF, Tsai CC (1994) Synthesis and solubility of the poly(sulfobetaine)s and the corresponding cationic polymers. 1. Synthesis and characterization of sulfobetaines and the corresponding cationic monomers by nuclear-magnetic-resonance spectra. Polymer 35(10):2210-217 CrossRef
    36. Lee WF, Tsai CC (1995) Synthesis and solubility of the poly(sulfobetaine)s and the corresponding cationic polymers. 2. Aqueous-solution properties of poly N, N-dimethyl(acrylamido propyl) ammonium propane sulfonate. Polymer 36(2):357-64 CrossRef
    37. Shih Y-J et al (2012) “Schizophrenic-hemocompatible copolymers via switchable thermoresponsive transition of nonionic/zwitterionic block self-assembly in human blood. Biomacromolecules 13(9):2849-858 CrossRef
    38. Che Y-J et al (2011) Synthesis and properties of hydrophobically modified acrylamide-based polysulfobetaines. Polym Bull 66(1):17-5 CrossRef
    39. Flores JD et al (2009) Reversible “self-locked-micelles from a zwitterion-containing triblock copolymer. Macromolecules 42(14):4941-945 CrossRef
    40. Sun J-T et al (2012) Biocompatible zwitterionic sulfobetaine copolymer-coated mesoporous silica nanoparticles for temperature-responsive drug release. Macromol Rapid Commun 33(9):811-18 CrossRef
    41. Kamenska E et al (2009) Synthesis and characterization of zwitterionic co-polymers as matrices for sustained metoprolol tartrate delivery. J Biomater Sci Polym Ed 20(2):181-97 CrossRef
    42. Kuo W-H et al (2011) Surface modification with poly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation. Biomacromolecules 12(12):4348-356 CrossRef
    43. Lalani R, Liu L (2012) Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications. Biomacromolecules 13(6):1853-863 CrossRef
    44. Liu P-S et al (2009) Grafting of zwitterion from cellulose membranes via ATRP for improving blood compatibility. Biomacromolecules 10(10):2809-816 CrossRef
    45. Robertson CG et al (2011) Flocculation, reinforcement, and glass transition effects in silica-filled styrene-butadiene rubber. Rubber Chem Technol 84(4):507-19 CrossRef
    46. Liu P-S et al (2010) Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. J Membr Sci 350(1-):387-94 CrossRef
    47. Wang L et al (2009) Highly efficient antifouling ultrafiltration membranes incorporating zwitterionic poly(3-(methacryloylamino)propyl -dimethyl(3-sulfopropyl) ammonium hydroxide). J Membr Sci 340(1-):164-70 CrossRef
    48. Zhao J et al (2011) Improved biocompatibility and antifouling property of polypropylene non-woven fabric membrane by surface grafting zwitterionic polymer. J Membr Sci 369(1-):5-2 CrossRef
    49. Zhao Y-H, Wee K-H, Bai R (2010) Highly hydrophilic and low-protein-fouling polypropylene membrane prepared by surface modification with sulfobetaine-based zwitterionic polymer through a combined surface polymerization method. J Membr Sci 362(1-):326-33 CrossRef
    50. Kim JC et al (2012) Biocompatible characteristics of sulfobetaine-containing brush polymers. Macromol Res 20(7):746-53 CrossRef
    51. Chang Y et al (2010) Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(n-isopropyl acrylamide) containing zwitterionic polysulfobetaine. Biomacromolecules 11(4):1101-110 CrossRef
    52. Zhang Z et al (2009) Zwitterionic hydrogels: an in vivo implantation study. J Biomater Sci Polym Ed 20(13):1845-859 CrossRef
    53. Kasak P et al (2011) Zwitterionic hydrogels crosslinked with novel zwitterionic crosslinkers: synthesis and characterization. Polymer 52(14):3011-020 CrossRef
    54. Takahashi A et al (2011) Thermosensitive properties of semi-IPN gel composed of amphiphilic gel and zwitterionic thermosensitive polymer in buffer solutions containing high concentration salt. Polymer 52(17):3791-799 CrossRef
    55. McCormick CL, Elliott DL (1986) Water-soluble copolymers. 14. Potentiometric and turbidimetric studies of water-soluble copolymers of acrylamide—comparison of carboxylated and sulfonated copolymers. Macromolecules 19(3):542-47 CrossRef
    56. Rego JM, Huglin MB (1991) Influence of composition on properties of hydrogels of 2-hydroxyethyl methacrylate with a sulfobetaine comonomer. Polym J 23(12):1425-434 CrossRef
    57. Che Y-J et al (2010) Aggregation behavior of copolymer containing sulfobetaine structure in aqueous solution. J Macromol Sci B Phys 49(4):695-10 CrossRef
    58. Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, New York
    59. Huglin MB (1972) Light scattering from polymer solutions. Academic, London
    60. Berry GC (1966) Thermodynamic and conformational properties of polystyrene. I. Light-scattering studies on dilute solutions of linear polystyrenes. J Chem Phys 44(12):4550-564 CrossRef
    61. Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62(21):7512-515 CrossRef
    62. Salamone JC et al (1977) Preparation of inner salt polymers from vinylimidazolium sulfobetaines. Polymer 18(10):1058-062 CrossRef
    63. Mary P et al (2007) Reconciling low- and high-salt solution behavior of sulfobetaine polyzwitterions. J Phys Chem B 111(27):7767-777 CrossRef
    64. Huglin MB, Radwan MA (1991) Properties of poly N-2-(methyacryloyloxy)ethyl-N, N-dimethyl-N-3-sulfopropylammonium betaine in dilute-solution. Makromol Chem Macromol Chem Phys 192(10):2433-445 CrossRef
    65. Dobrynin AV, Rubinstein M (1995) Flory theory of a polyampholyte chain. J Phys II 5(5):677-95
    66. Colby RH (2010) Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions. Rheol Acta 49(5):425-42 CrossRef
    67. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, New York
    68. Che Y-J et al (2010) A study of aggregation behavior of a sulfobetaine copolymer in dilute solution. J Polym Res 17(4):557-66 CrossRef
    69. Huggins ML (1942) The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. J Am Chem Soc 64:2716-718 CrossRef
    70. Salamone JC et al (1988) Synthesis and solution properties of ampholytic acrylamide ionomers. J Macromol Sci Chem A25(5-):811-37 CrossRef
    71. Matsuoka S, Cowman MK (2002) Equation of state for polymer solution. Polymer 43(12):3447-453 CrossRef
    72. Feng XS et al (2005) Toward an easy access to dendrimer-like poly(ethylene oxide)s. J Am Chem Soc 127(31):10956-0966 CrossRef
    73. Trollsas M et al (2000) Constitutional isomers of dendrimer-like star polymers: design, synthesis, and conformational and structural properties. Macromolecules 33(17):6423-438 CrossRef
    74. Lee WF, Chen CF, Yen SH (2001) Synthesis and characterization of novel sulfobetaines derived from 2,4-tolylene diisocyanate. J Appl Polym Sci 82(14):3447-459 CrossRef
    75. Gui ZL et al (2009) Synthesis, characterization and flocculation performance of zwitterionic copolymer of acrylamide and 4-vinylpyridine propylsulfobetaine. Eur Polym J 45(5):1403-411 CrossRef
    76. Azzaroni O, Brown AA, Huck WTS (2006) UCST wetting transitions of polyzwitterionic brushes driven by self-association. Angew Chem Int Ed 45(11):1770-774 CrossRef
    77. Okada R, Tanzawa H (1965) Apparent activation energy for viscous flow of polymer solutions. J Polym Sci Gen Pap 3(12PA):4294 CrossRef
    78. Yao KJ, Liu FH (1995) Synthesis and rheological behavior in aqueous-solutions of poly(acrylamide-co-maleic acid). J Appl Polym Sci 56(1):9-5 CrossRef
    79. Gupta K, Yaseen M (1997) Viscosity-temperature relationship of dilute solution of poly(vinyl chloride) in cyclohexanone and in its blends with xylene. J Appl Polym Sci 65(13):2749-760 CrossRef
    80. de Vasconcelos CL et al (2000) Viscosity-temperature-concentration relationship for starch-DMSO-water solutions. Carbohydr Polym 41(2):181-84 CrossRef
    81. Singh M, Kumar S (2004) Activation energy, free energy, enthalpy, and entropy changes associated with viscometric changes of extremely to moderately dilute aqueous solutions of polyvinylpyrrolidone at 288.15-313.15 K. J Appl Polym Sci 93(1):47-5 CrossRef
    82. Ying L, Hou C, Qun W (2007) Rheological behavior of acrylonitrile/ammonium acrylate copolymer solutions. J Appl Polym Sci 103(4):2320-324 CrossRef
  • 作者单位:Tao Ye (1)
    Yihu Song (1)
    Qiang Zheng (1)

    1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
  • ISSN:1435-1536
文摘
The copolymer of acrylamide and 3-[N-(2-methacryloxylethyl)-N,N-dimethylammonio]-propane sulfonate (PAM-MDMPS) was prepared via free radical copolymerization. Solubility of the copolymers was studied by turbidimetric titration method under different conditions. It was found for the first time that the critical salt concentration to dissolve the copolymer showed a plateau over one order of magnitude up to the critical overlap concentration. Rheological behavior and chain conformation of the copolymers in 1?M NaCl solution were also studied. The concentration regions according to scaling theory were found the same as neutral polymers in good solvent. The specific viscosities could be normalized by the overlap parameter. According to the Huggins relation, the copolymers adopted a more compact conformation in 1?M NaCl with increasing MDMPS content due to the hydrophobic association of the betaine unit in the macromolecular backbone, which was stabilized by the strongly hydrated dipolar pendant chains.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.