Nuclear quantum effect and temperature dependency on the hydrogen-bonded structure of 7-azaindole dimer
详细信息    查看全文
  • 作者:Nawee Kungwan (1)
    Yudai Ogata (2)
    Supa Hannongbua (3)
    Masanori Tachikawa (2)
  • 关键词:7 ; Azaindole dimer ; Path integral simulation ; Nuclear quantum effect
  • 刊名:Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:133
  • 期:9
  • 全文大小:1,524 KB
  • 参考文献:1. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, New York CrossRef
    2. Goodman MF (1995) DNA models: mutations caught in the act. Nature 378(6554):237-38 CrossRef
    3. Al-Taylor C, Ashraf el-Bayoumi M, Kasha M (1969) Excited-state two-proton tautomerism in hydrogen-bonded n-heterocyclic base pairs. Proc Natl Acad Sci 63(2):253-60 CrossRef
    4. Catalan J, Kasha M (2000) Photophysics of 7-azaindole, tts doubly-H-bonded base-pair, and corresponding proton-transfer-tautomer dimeric species, via defining experimental and theoretical results. J Phys Chem A 104(46):10812-0820
    5. Douhal A, Kim SK, Zewail AH (1995) Femtosecond molecular-dynamics of tautomerization in model base-pairs. Nature 378(6554):260-63 CrossRef
    6. Sekiya H, Sakota K (2008) Excited-state double-proton transfer in a model DNA base pair: resolution for stepwise and concerted mechanism controversy in the 7-azaindole dimer revealed by frequency- and time-resolved spectroscopy. J Photochem Photobiol C Photochem Rev 9(2):81-1 CrossRef
    7. Kwon OH, Zewail AH (2007) Double proton transfer dynamics of model DNA base pairs in the condensed phase. Proc Natl Acad Sci USA 104(21):8703-708 CrossRef
    8. Takeuchi S, Tahara T (2001) Excitation-wavelength dependence of the femtosecond fluorescence dynamics of 7-azaindole dimer: further evidence for the concerted double proton transfer in solution. Chem Phys Lett 347(1-):108-14
    9. Takeuchi S, Tahara T (2007) The answer to concerted versus step-wise controversy for the double proton transfer mechanism of 7-azaindole dimer in solution. Proc Natl Acad Sci USA 104(13):5285-290 CrossRef
    10. Suzuki T, Okuyama U, Ichimura T (1997) Double proton transfer reaction of 7-azaindole dimer and complexes studied by time-resolved thermal lensing technique. J Phys Chem A 101(38):7047-052
    11. Tokumura K, Watanabe Y, Itoh M (1984) A transient absorption and two-step laser excitation fluorescence study of the double proton transfer of 7-azaindole H-bonded dimers in 3-methylpentane. Chem Phys Lett 111(45):379-82
    12. Tokumura K, Watanabe Y, Itoh M (1986) Deuterium isotope effects of excited-state and ground-state double-proton-transfer processes of the 7-azaindole H-bonded dimer in 3-methylpentane. J Phys Chem 90(11):2362-366
    13. Tokumura K, Watanabe Y, Udagawa M, Itoh M (1987) Photochemistry of transient tautomer of 7-azaindole hydrogen-bonded dimer studied by two-step laser excitation fluorescence measurements. J Am Chem Soc 109(5):1346-350 CrossRef
    14. Yokoyama H, Watanabe H, Omi T, Ishiuchi S-I, Fujii M (2001) Structure of hydrogen-bonded clusters of 7-azaindole studied by IR dip spectroscopy and ab initio molecular orbital calculation. J Phys Chem A 105(41):9366-374
    15. Hazra MK, Mukherjee M, Ramanathan V, Chakraborty T (2012) Structure and intermolecular vibrations of 7-azaindole-water 2:1 complex in a supersonic jet expansion: laser-induced fluorescence spectroscopy and quantum chemistry calculation. J Chem Sci 124(1):131-39 CrossRef
    16. Catalan J, Perez P, del Valle JC, de Paz JLG, Kasha M (2002) The concerted mechanism of photo-induced biprotonic transfer in 7-azaindole dimers: a model for the secondary evolution of the classic C2h dimer and comparison of four mechanisms. Proc Natl Acad Sci 99(9):5799-803 CrossRef
    17. Dreyer J (2007) Unraveling the structure of hydrogen bond stretching mode infrared absorption bands: an anharmonic density functional theory study on 7-azaindole dimers. J Chem Phys 127(5):054309
    18. Dwyer JR, Dreyer J, Nibbering ETJ, Elsaesser T (2006) Ultrafast dynamics of vibrational N–H stretching excitations in the 7-azaindole dimer. Chem Phys Lett 432(13):146-51
    19. Ishikawa H, Yabuguchi H, Yamada Y, Fujihara A, Fuke K (2010) Infrared spectroscopy of jet-cooled tautomeric dimer of 7-azaindole: a model system for the ground-state double proton transfer reaction. J Phys Chem A 114(9):3199-206
    20. Ishikawa H, Nakano T, Takashima T, Yabuguchi H, Fuke K (2013) Deuteration effect on the NH/ND stretch band of the jet-cooled 7-azaindole and its tautomeric dimers: relation between the vibrational relaxation and the ground-state double proton-transfer reaction. Chem Phys 419:101-06
    21. Brauer B, Gerber RB, Kabelac M, Hobza P, Bakker JM, Abo Riziq AG, de Vries MS (2005) Vibrational spectroscopy of the G-C base pair:-experiment, harmonic and anharmonic calculations, and the nature of the anharmonic couplings. J Phys Chem A 109(31):6974-984
    22. Ishibashi H, Hayashi A, Shiga M, Tachikawa M (2008) Geometric isotope effect on the N2H7+ cation and N2H5?anion by ab initio path integral molecular dynamics simulation. ChemPhysChem 9(3):383-87 CrossRef
    23. Yagi K, Karasawa H, Hirata S, Hirao K (2009) First-principles quantum calculations on the infrared spectrum and vibrational dynamics of the guanine–cytosine base pair. ChemPhysChem 10(9-0):1442-444 CrossRef
    24. Pérez A, Tuckerman ME, Hjalmarson HP, von Lilienfeld OA (2010) Enol tautomers of Watson–Crick base pair models are metastable because of nuclear quantum effects. J Am Chem Soc 132(33):11510-1515. doi:10.1021/ja102004b CrossRef
    25. Daido M, Kawashima Y, Tachikawa M (2013) Nuclear quantum effect and temperature dependency on the hydrogen-bonded structure of base pairs. J Comput Chem 34(28):2403-411 CrossRef
    26. Daido M, Koizumi A, Shiga M, Tachikawa M (2011) Nuclear quantum effect on the hydrogen-bonded structure of guanine–cytosine pair. Theor Chem Acc 130(2-):385-91 CrossRef
    27. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13(12):1173-213 CrossRef
    28. MOPAC2009 (2008) James J. P. Stewart, Stewart computational chemistry. Colorado Spring, CO, USA. http://OpenMOPAC.net
    29. Ahlrichs R, Baer M, Haeser M, Horn H, Koelmel C (1989) Electronic structure calculations on workstation computers: the program system turbomole. Chem Phys Lett 162(3):165-69
    30. Frisch MJ, Trucks GW, Schelegel HB et al (2003) GAUSSIAN 03, Revision B. 05. Gaussian Inc., Pittsburgh, PA
    31. Martyna GJ, Klein ML, Tuckerman M (1992) Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97(4):2635-643
    32. Kawashima Y, Tachikawa M (2014) Ab initio path integral molecular dynamics study of the nuclear quantum effect on out-of-plane ring deformation of hydrogen maleate anion. J Chem Theory Comput 10(1):153-63
    33. Marx D, Parrinello M (1994) Ab initio path-integral molecular dynamics. Z Phys B Condens Matter 95 (Copyright (C) 2014 American Chemical Society (ACS). All Rights Reserved.):143-44
    34. Marx D, Parrinello M (1996) Ab initio path integral molecular dynamics: basic ideas. J Chem Phys 104(11):4077-082
    35. Cao J, Martyna GJ (1996) Adiabatic path integral molecular dynamics methods. II. Algorithms. J Chem Phys 104(5):2028-035
    36. Suzuki K, Tachikawa M, Shiga M (2010) Efficient ab initio path integral hybrid Monte Carlo based on the fourth-order Trotter expansion: application to fluoride ion-water cluster. J Chem Phys 132(14):144108
    37. Cao J, Berne BJ (1993) A Born–Oppenheimer approximation for path integrals with an application to electron solvation in polarizable fluids. J Chem Phys 99(4):2902-916
    38. Tuckerman ME, Marx D, Klein ML, Parrinello M (1996) Efficient and general algorithms for path integral Car–Parrinello molecular dynamics. J Chem Phys 104(14):5579-588
    39. Shiga M, Tachikawa M, Miura S (2001) A unified scheme for ab initio molecular orbital theory and path integral molecular dynamics. J Chem Phys 115(20):9149-159
    40. Kawashima Y, Tachikawa M (2013) Nuclear quantum effect on intramolecular hydrogen bond of hydrogen maleate anion: an ab initio path integral molecular dynamics study. Chem Phys Lett 571:23-7
    41. Yu XF, Yamazaki S, Taketsugu T (2011) Concerted or stepwise mechanism? CASPT2 and LC-TDDFT study of the excited-state double proton transfer in the 7-azaindole dimer. J Chem Theory Comput 7(4):1006-015
    42. Tachikawa M, Shiga M (2005) Geometrical H/D isotope effect on hydrogen bonds in charged water clusters. J Am Chem Soc 127(34):11908-1909 CrossRef
    43. Suzuki K, Shiga M, Tachikawa M (2008) Temperature and isotope effects on water cluster ions with path integral molecular dynamics based on the fourth order Trotter expansion. J Chem Phys 129(14):144310
    44. Koizumi A, Suzuki K, Shiga M, Tachikawa M (2011) Communication: a concerted mechanism between proton transfer of Zundel anion and displacement of counter cation. J Chem Phys 134(3):031101
    45. Folmer DE, Poth L, Wisniewski ES, Castleman AW Jr (1998) Arresting intermediate states in a chemical reaction on a femtosecond time scale: proton transfer in model base pairs. Chem Phys Lett 287(12):1-
    46. Folmer DE, Wisniewski ES, Hurley SM, Castleman AW (1999) Femtosecond cluster studies of the solvated 7-azaindole excited state double-proton transfer. Proc Natl Acad Sci USA 96(23):12980-2986 CrossRef
    47. Kitao A, Hirata F, Gō N (1991) The effects of solvent on the conformation and the collective motions of protein: normal mode analysis and molecular dynamics simulations of melittin in water and in vacuum. Chem Phys 158(2-):447-72
    48. Kawashima Y, Sugita Y, Yoda T, Okamoto Y (2005) Effects of the fixed end in single-molecule imaging techniques: a replica-exchange molecular dynamics simulation study. Chem Phys Lett 414(4-):449-55
    49. Kitao A, Go N (1999) Investigating protein dynamics in collective coordinate space. Curr Opin Struct Biol 9(2):164-69 CrossRef
    50. Potoyan DA, Papoian GA (2011) Energy landscape analyses of disordered histone tails reveal special organization of their conformational dynamics. J Am Chem Soc 133(19):7405-415 CrossRef
    51. Yang L-W, Eyal E, Bahar I, Kitao A (2009) Principal component analysis of native ensembles of biomolecular structures (PCA_NEST): insights into functional dynamics. Bioinformatics 25(5):606-14 CrossRef
  • 作者单位:Nawee Kungwan (1)
    Yudai Ogata (2)
    Supa Hannongbua (3)
    Masanori Tachikawa (2)

    1. Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
    2. Quantum Chemistry Division, Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027, Japan
    3. Department of Chemistry, Faculty of Science, Kasetsart University, Bangkhen Campus, Bangkok, 10930, Thailand
  • ISSN:1432-2234
文摘
The structure of 7-azaindole dimer (7AI2) as a model compound for DNA base pair has been studied by classical molecular dynamics (MD) and path integral molecular dynamics (PIMD) simulations on the semi-empirical PM6 potential energy surface at various temperatures, to investigate the nuclear quantum effect and temperature dependency on the hydrogen-bonded moiety of 7AI2. At 75?K, two H-bondings are maintained throughout a given simulation time in both classical and PIMD (quantum) simulations. At 150?K, these two H-bondings are maintained in only quantum simulation, while in classical simulation, the two H-bondings (or one H-bonding) are sometimes broken and reformed. For 225?K, these two H-bondings are broken in both classical and quantum simulations. We have also applied a principal component analysis to MD and PIMD simulations to analyze the intermolecular motions. We found that the ratio of the second lowest (dimer butterfly out-of-plane) vibrational mode from normal mode analysis which is the most dominant motion decreases with increasing temperature, whereas that of first lowest (dimer torsion out-of-plane) vibrational mode which is the second most dominant motion increases with increasing temperature from temperature 75 to 150?K and then decreases at 225?K due to the nuclear quantum effect. Moreover, the motions of two hydrogen-bonded structures are significantly different with increasing temperature. This difference is revealed by the principal component analysis which shows that the ratio of opening in-plane motion decreases and the ratio of stretching in-plane motion decreases.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.