Screening and transcriptome analysis of water deficiency tolerant germplasms in peanut (Arachis hypogaea)
详细信息    查看全文
  • 作者:Yi Shen ; E. Zhiguo ; Xiaojun Zhang ; Yonghui Liu ; Zhide Chen
  • 关键词:Transcriptome sequencing ; Water deficiency stress ; Peanut ; Arachis hypogaea
  • 刊名:Acta Physiologiae Plantarum
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:37
  • 期:5
  • 全文大小:1,497 KB
  • 参考文献:Chen X, Zhu W, Azam S, Li H, Zhu F, Hong Y, Liu H, Zhang E, Wu H, Yu S et al (2013) Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion. Plant Biotechnol J 11:115鈥?27View Article PubMed
    Chi X, Yang Q, Chen X, Wang J, Pan L, Chen M, Yang Z, He Y, Liang X, Yu S (2011) Identification and characterization of microRNAs from peanut (Arachis hypogaea L.) by high-throughput sequencing. PLoS One 6:e27530View Article PubMed Central PubMed
    Collino D, Dardanelli J, Sereno R, Racca R (2001) Physiological responses of argentine peanut varieties to water stress: light interception, radiation use efficiency and partitioning of assimilates. Field Crop Res 70:177鈥?84View Article
    Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674鈥?676View Article PubMed
    Devaiah KM, Bali G, Athmaram TN, Basha MS (2007) Identification of two new genes from drought tolerant peanut up-regulated in response to drought. Plant Growth Regul 52:249鈥?58View Article
    Dram茅 KN, Clavel D, Repellin A, Passaquet C, Zuily-Fodil Y (2007) Water deficit induces variation in expression of stress-responsive genes in two peanut (Arachis hypogaea L.) cultivars with different tolerance to drought. Plant Physiol Bioch 45:236鈥?43View Article
    Gautami B, Pandey MK, Vadez V, Nigam SN, Ratnakumar P, Krishnamurthy L, Radhakrishnan T, Gowda MVC, Narasu ML, Hoisington DA et al (2011) Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed 30:757鈥?72View Article PubMed Central PubMed
    Govind G, Vokkaliga ThammeGowda H, Jayaker Kalaiarasi P, Iyer DR, Muthappa SK, Nese S, Makarla UK (2009) Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut. Mol Genet Genomics 281:591鈥?05View Article PubMed Central PubMed
    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644鈥?52View Article PubMed Central PubMed
    Guimaraes PM, Brasileiro AC, Morgante CV, Martins AC, Pappas G, Silva OB Jr, Togawa R, Leal-Bertioli SC, Araujo AC, Moretzsohn MC et al (2012) Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection. BMC Genom 13:387View Article
    Jongrungklang N, Toomsan B, Vorasoot N, Jogloy S, Boote KJ, Hoogenboom G, Patanothai A (2013) Drought tolerance mechanisms for yield responses to pre-flowering drought stress of peanut genotypes with different drought tolerant levels. Field Crop Res 144:34鈥?2View Article
    Li X-Y, Liu X, Yao Y, Li Y-H, Liu S, He C-Y, Li J-M, Lin Y-Y, Li L (2013) Overexpression of Arachis hypogaea AREB1 gene enhances drought tolerance by modulating ROS scavenging and maintaining endogenous ABA content. Int J Mol Sci 14:12827鈥?2842View Article PubMed Central PubMed
    Li X, Lu J, Liu S, Liu X, Lin Y, Li L (2014) Identification of rapidly induced genes in the response of peanut (Arachis hypogaea) to water deficit and abscisic acid. BMC Biotechnol 14:58View Article PubMed Central PubMed
    Liu X, Hong L, Li X-Y, Yao Y, Hu B, Li L (2011) Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Biosci Biotech Biochem 75:443鈥?50View Article
    Liu X, Liu S, Wu J, Zhang B, Li X, Yan Y, Li L (2013) Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging. Plant Physiol Biochem 70:354鈥?59View Article PubMed
    Manjulatha M, Sreevathsa R, Kumar AM, Sudhakar C, Prasad TG, Tuteja N, Udayakumar M (2014) Overexpression of a pea DNA helicase (PDH45) in peanut (Arachis hypogaea L.) confers improvement of cellular level tolerance and productivity under drought stress. Mol Biotechnol 56:111鈥?25View Article PubMed
    Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509鈥?517View Article PubMed Central PubMed
    Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621鈥?28View Article PubMed
    Nakazawa Y, Sato H, Uchino M, Takano K (2006) Purification, characterization and cloning of phospholipase D from peanut seeds. Protein J 25:212鈥?23View Article PubMed
    Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimaraes P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B et al (2012) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30:639鈥?51View Article PubMed
    Pandurangaiah M, Lokanadha Rao G, Sudhakarbabu O, Nareshkumar A, Kiranmai K, Lokesh U, Thapa G, Sudhakar C (2014) Overexpression of horsegram (Macrotyloma uniflorum Lam. Verdc.) NAC transcriptional factor (MuNAC4) in groundnut confers enhanced drought tolerance. Mol Biotechnol 56:758鈥?69View Article PubMed
    Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ et al (2010) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119鈥?132View Article PubMed Central PubMed
    Reddy SK, Liu S, Rudd JC, Xue Q, Payton P, Finlayson SA, Mahan J, Akhunova A, Holalu SV, Lu N (2014) Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112. J Plant Physiol 171:1289鈥?298View Article PubMed
    Sarkar T, Thankappan R, Kumar A, Mishra GP, Dobaria JR (2014) Heterologous expression of the AtDREB1A Gene in transgenic peanut-conferred tolerance to drought and salinity stresses. PLoS One 9:e110507View Article PubMed Central PubMed
    Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296鈥?02View Article PubMed
    Sunkar R, Li Y-F, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196鈥?03View Article PubMed
    Wan L, Wu Y, Huang J, Dai X, Lei Y, Yan L, Jiang H, Zhang J, Varshney RK, Liao B (2014) Identification of ERF genes in peanuts and functional analysis of AhERF008 and AhERF019 in abiotic stress response. Funct Integr Genomics 14:467鈥?77View Article PubMed
    Wu N, Matand K, Wu H, Li B, Li Y, Zhang X, He Z, Qian J, Liu X, Conley S et al (2013) De novo next-generation sequencing, assembling and annotation of Arachis hypogaea L. Spanish botanical type whole plant transcriptome. Theor Appl Genet 126:1145鈥?149View Article PubMed
    Xia H, Zhao C, Hou L, Li A, Zhao S, Bi Y, An J, Zhao Y, Wan S, Wang X (2013) Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness. BMC Genom 14:517View Article
    Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293鈥揥297View Article PubMed Central PubMed
    Yin D, Wang Y, Zhang X, Li H, Lu X, Zhang J, Zhang W, Chen S (2013) De novo assembly of the peanut (Arachis hypogaea L.) seed transcriptome revealed candidate unigenes for oil accumulation pathways. PLoS One 8:e73767View Article PubMed Central PubMed
    Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang X, Li Y (2012) De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). BMC Genom 13:90View Article
    Zhang W, Chu Y, Ding C, Zhang B, Huang Q, Hu Z, Huang R, Tian Y, Su X (2014) Transcriptome sequencing of transgenic poplar (Populus聽脳聽euramericana 鈥楪uariento鈥? expressing multiple resistance genes. BMC Genet 15(Suppl 1):S7View Article PubMed Central PubMed
    Zhao CZ, Xia H, Frazier TP, Yao YY, Bi YP, Li AQ, Li MJ, Li CS, Zhang BH, Wang XJ (2010) Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol 10:3View Article PubMed Central PubMed
    Zhu W, Chen X, Li H, Zhu F, Hong Y, Varshney RK, Liang X (2014) Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut. Plant Mol Biol 85:395鈥?09View Article PubMed Central PubMed
  • 作者单位:Yi Shen (1) (2)
    E. Zhiguo (3)
    Xiaojun Zhang (4)
    Yonghui Liu (1)
    Zhide Chen (1)

    1. Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
    2. Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
    3. China National Rice Research Institute, No. 359, Tiyuchang Road, Hangzhou, 310006, China
    4. College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, 266109, China
  • 刊物主题:Plant Physiology; Plant Genetics & Genomics; Plant Biochemistry; Plant Pathology; Plant Anatomy/Development; Agriculture;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-1664
文摘
Drought is one of the main limiting factors for peanut yield worldwide. However, the underlying genetic and molecular mechanisms remain unclear. In this study, we identified several water deficiency tolerant peanut germplasms based on physiological properties in the seedling stage. One of the germplasms was further characterized by transcriptome sequencing of samples that had been untreated or treated with PEG 6000 at three different times. A total of 370,145 non-redundant transcripts and 141,289 unigenes were obtained, and differentially expressed transcripts were identified among samples. Based on functional annotation, transcripts involved in drought response pathways were selected for qPCR analysis. Similar patterns but different levels of gene expression were found between drought-tolerant and drought-sensitive germplasms. These findings provide useful insights into drought tolerance of peanut.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.