A roe-type Riemann solver for hyperbolic systems with relaxation based on time-dependent wave decomposition
详细信息    查看全文
文摘
The paper is devoted to the construction of a higher order Roe-type numerical scheme for the solution of hyperbolic systems with relaxation source terms. It is important for applications that the numerical scheme handles both stiff and non stiff source terms with the same accuracy and computational cost and that the relaxation variables are computed accurately in the stiff case. The method is based on the solution of a Riemann problem for a linear system with constant coefficients: a study of the behavior of the solutions of both the nonlinear and linearized problems as the relaxation time tends to zero enables to choose a convenient linearization such that the numerical scheme is consistent with both the hyperbolic system when the source terms are absent and the correct relaxation system when the relaxation time tends to zero. The method is applied to the study of the propagation of sound waves in a two-phase medium. The comparison between our numerical scheme, usual fractional step methods, and numerical simulation of the relaxation system shows the necessity of using the solutions of a fully coupled hyperbolic system with relaxation terms as the basis of a numerical scheme to obtain accurate solutions regardless of the stiffness.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.