The Challenge of Forecasting the Onset and Development of Radiation Fog Using Mesoscale Atmospheric Models
详细信息    查看全文
  • 作者:G. J. Steeneveld (1)
    R. J. Ronda (1)
    A. A. M. Holtslag (1)

    1. Meteorology and Air Quality Section
    ; Wageningen University ; P.O. Box 47 ; 6700 AA ; Wageningen ; The Netherlands
  • 关键词:Cabauw ; Domain size ; Grid nesting ; HARMONIE model ; Mesoscale modelling ; Radiation fog ; WRF model
  • 刊名:Boundary-Layer Meteorology
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:154
  • 期:2
  • 页码:265-289
  • 全文大小:4,547 KB
  • 参考文献:1. Bartok J, Bott A, Gera M (2012) Fog prediction for road traffic safety in a coastal desert region. Boundary-Layer Meteorol 145:485鈥?06 CrossRef
    2. Beljaars ACM, Bosveld FC (1997) Cabauw data for the validation of land surface parametrization schemes. J Clim 10:1172鈥?193 CrossRef
    3. Bergot T, Guedalia D (1994) Numerical forecasting of radiation fog. Part I: numerical model and sensitivity tests. Mon Weather Rev 122:1218鈥?230 CrossRef
    4. Bergot T, Carrer D, Noilhan J, Bougeault P (2005) Improved site-specific numerical prediction of fog and low clouds: A feasibility study. Weather Forecast 20:627鈥?46
    5. Bergot T, Terradellas T, Cuxart J, Mira T, Liechti O, M眉ller M, Nielsen NW (2007) Intercomparison of single-column numerical models for the prediction of radiation fog. J Appl Meteorol Climatol 46:504鈥?21
    6. Bosveld F, Baas P, Steeneveld GJ, Holtslag A, Angevine W, Bazile E, de Bruijn E, Deacu D, Edwards J, Ek M, Larson V, Pleim J, Raschendorfer M, Svensson G (2014) The third GABLS intercomparison case for evaluation studies of boundary-layer models: part B: results and process understanding. Boundary-Layer Meteorol 152:157鈥?87
    7. Bott A, Trautmann T (2002) PAFOG鈥攁 new efficient forecast model of radiation fog and low-level stratiform clouds. Atmos Res 64:191鈥?03 CrossRef
    8. Bott A, Sievers U, Zdunkowski W (1990) A Radiation Fog Model with a detailed treatment of the interaction between radiative transfer and fog microphysics. J Atmos Sci 47:2153鈥?166 CrossRef
    9. Brown R, Roach WT (1976) The physics of radiation fog: II-A numerical study. Q J R Meteorol Soc 102:335鈥?54
    10. Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569鈥?85 CrossRef
    11. Chen F et al (2007) Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system. J Appl Meteorol Climatol 46:694鈥?13
    12. Cuxart J, Jim茅nez MA (2011) Deep radiation fog in a wide closed valley: study by numerical modeling and remote sensing. Pure Appl Geophys 169:911鈥?26 CrossRef
    13. Cuxart J, Bougeault P, Redelsberger JL (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J R Meteorol Soc 126:1鈥?0 CrossRef
    14. de Rooy WC, Siebesma AP (2008) A simple parametrization for detrainment in shallow cumulus. Mon Weather Rev 136:560鈥?76 CrossRef
    15. de Rooy WC, Siebesma AP (2010) Analytical expressions for entrainment and detrainment in cumulus convection. Q J R Meteorol Soc 136:1216鈥?227
    16. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077鈥?107 CrossRef
    17. Duynkerke PG (1991) Radiation fog: a comparison of model simulation with detailed observations. Mon Weather Rev 119:324鈥?41 CrossRef
    18. Duynkerke PG (1999) Turbulence, radiation and fog in Dutch stable boundary layers. Boundary-Layer Meteorol 90:447鈥?77 CrossRef
    19. Edwards JM (2009) Radiative processes in the stable boundary layer: part I. Radiative aspects. Boundary-Layer Meteorol 131:105鈥?26 CrossRef
    20. Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18:1351鈥?367 CrossRef
    21. Fu G, Guo J, Xie SP, Duan Y, Zhang M (2006) Analysis and high-resolution modeling of a dense fog event over the Yellow Sea. Atmos Res 81:293鈥?03 CrossRef
    22. Fu G, Li P, Crompton JG, Guo J, Gao S, Zhang S (2010) An observational and modeling study of a sea fog event over the Yellow Sea on 1 August 2003. Meteorol Atmos Phys 107:149鈥?59 CrossRef
    23. Gultepe I, Tardif R, Michaelides SC, Cermak J, Bott A, Bendix J, Muller M, Pagowski M, Hansen B, Ellrod G, Jacobs W, Toth G, Cober SG (2007) Fog research: a review of past achievements and future perspectives. Pure Appl Geophys 164:1121鈥?159 CrossRef
    24. Ha KJ, Mahrt L (2003) Radiative and turbulent fluxes in the nocturnal boundary layer. Tellus 55A:317鈥?27 CrossRef
    25. Holtslag AAM, Svensson G, Baas P, Basu S, Beare B, Beljaars ACM, Bosveld FC, Cuxart J, Lindvall J, Steeneveld GJ, Tjernstr枚m M (2013) Stable atmospheric boundary layers and diurnal cycles鈥攃hallenges for weather and climate models. Bull Am Meteorol Soc 94:1691鈥?706 CrossRef
    26. Kleczek MA, Steeneveld GJ, Holtslag AAM (2014) Evaluation of the weather research and forecasting mesoscale model for GABLS3: impact of boundary-layer schemes, boundary conditions and spin-up. Boundary-Layer Meteorol 152:213鈥?43 CrossRef
    27. Leduc M, Laprise R (2009) Regional climate model sensitivity to domain size. Clim Dyn 32:833鈥?54 CrossRef
    28. Leduc M, Laprise R, Moretti-Poisson M, Morin JP (2011) Sensitivity to domain size of mid-latitude summer simulations with a regional climate model. Clim Dyn 37:343鈥?56 CrossRef
    29. Le Moigne P (2012) Surfex scientific documentation, 237 pp. http://www.cnrm.meteo.fr/surfex/IMG/pdf/surfex_scidoc_v2.pdf
    30. Masson V, Champeaux JL, Chauvin F, Meriguet C, Lacaze R (2003) A global database of land surface parameters at 1-km resolution in meteorological and climate models. J Clim 16:1261鈥?282 CrossRef
    31. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663鈥?6682 CrossRef
    32. M眉ller MD, Masbou M, Bott A (2010) Three-dimensional fog forecasting in complex terrain. Q J R Meteorol Soc 136:2189鈥?202 CrossRef
    33. Nakanishi M, Niino H (2006) An improved Mellor鈥揧amada level-3 model: its numerical stability and application to a regional prediction of advection fog. Boundary-Layer Meteorol 119:397鈥?07 CrossRef
    34. Pinty JP, Jabouille P (1998) A mixed-phase cloud parametrization for use in mesoscale nonhydrostatic model: simulations of a squall line and of orographic precipitations. Preprints Conference on cloud physics. American Meteorological Society, Everett, pp 217鈥?20
    35. R茅my S, Bergot T (2009) Assesing the impact of observations on a local numerical fog prediction system. Q J R Meteorol Soc 135:1248鈥?265 CrossRef
    36. Rom谩n-Casc贸n C, Yag眉e C, Sastre M, Maqueda M, Salamanca F, Viana S (2012) Observations and WRF simulations of fog events at the Spanish Northern Plateau. Adv Sci Res 8:11鈥?8 CrossRef
    37. Savij盲rvi H (2006) Radiative and turbulent heating rates in the clear-air boundary layer. Q J R Meteorol Soc 132:147鈥?61 CrossRef
    38. Siebesma AP, Soares PMM, Teixeira J (2007) A combined Eddy Diffusivity Mass Flux approach for the convective boundary layer. J Atmos Sci 64:1230鈥?248 CrossRef
    39. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers WG (2008) A description of the advanced research WRF, Version 3. NCAR Technical Note, Boulder
    40. Steeneveld GJ, Wokke MJJ, Groot Zwaaftink CD, Pijlman S, Heusinkveld BG, Jacobs AFG, Holtslag AAM (2010) Observations of the radiation divergence in the surface layer and its implication for its parametrization in numerical weather prediction models. J Geophys Res 115:D06107
    41. Steeneveld GJ, Tolk LF, Moene AF, Hartogensis OK, Peters W, Holtslag AAM (2011) Confronting the WRF and RAMS mesoscale models with innovative observations in the Netherlands鈥攅valuating the boundary-layer heat budget. J Geophys Res 116:D23114
    42. Stolaki S, Pytharoulis I, Karacostas T (2011) A study of fog characteristics using a coupled WRF-COBEL Model over Thessaloniki Airport, Greece. Pure Appl Geophys 169:961鈥?81 CrossRef
    43. Syed FS, K枚rnich H, Tjernstr枚m M (2012) On the fog variability over south Asia. Clim Dyn 39:2993鈥?005 CrossRef
    44. Tanaka H, Honma S, Nishi M, Igarashi T, Teramoto S, Nishio F, Abe S (1998) Acid fog and hospital visits for asthma: an epidemiological study. Eur Respir J 11:1301鈥?306 CrossRef
    45. Teixeira J (1999) Simulation of fog with the ECMWF prognostic cloud scheme. Q J R Meteorol Soc 125:529鈥?52 CrossRef
    46. Thoma C, Schneider W, Masbou M, Bott A (2012) Integration of local observations into the one dimensional fog model PAFOG. Pure Appl Geophys 169:881鈥?93 CrossRef
    47. Tudor M (2010) Impact of horizontal diffusion, radiation and cloudiness parametrization schemes on fog forecasting in valleys. Meteorol Atmos Phys 108:57鈥?0 CrossRef
    48. Und茅n P et al. (2002) HIRLAM-5 scientific documentation. HIRLAM-5 Project, SMHI, Norrkoping, Sweden, 146 pp. http://www.hirlam.org/open/publications/SciDoc_Dec2002.pdf
    49. Van der Velde IR, Steeneveld GJ, Holtslag AAM (2010) Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Mon Weather Rev 138:4237鈥?253 CrossRef
    50. Warner TT, Peterson RA, Treadon RE (1997) A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull Am Meteorol Soc 78:2599鈥?617 CrossRef
    51. Wild M, Ohmura A, Gilgen H, Morcrette JJ, Slingo A (2001) Evaluation of downward longwave radiation in general circulation models. J Clim 14:3227鈥?239 CrossRef
    52. Zhou B, Du J, Gultepe I, Dimego G (2011) Forecast of low visibility and fog from NCEP: current status and efforts. Pure Appl Geophys 169:895鈥?09 CrossRef
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Meteorology and Climatology
    Atmospheric Protection, Air Quality Control and Air Pollution
  • 出版者:Springer Netherlands
  • ISSN:1573-1472
文摘
The numerical weather prediction of radiation fog is challenging, as many models typically show large biases for the timing of the onset and dispersal of the fog, as well as for its depth and liquid water content. To understand the role of physical processes, i.e. turbulence, radiation, land-surface coupling, and microphysics, we evaluate the HARMONIE and Weather Research and Forecasting (WRF) mesoscale models for two contrasting warm fog episodes at the relatively flat terrain around the Cabauw tower facility in the Netherlands. One case involves a radiation fog that arose in calm anticyclonic conditions, and the second is a radiation fog that developed just after a cold front passage. The WRF model represents the radiation fog well, while the HARMONIE model forecasts a stratus lowering fog layer in the first case and hardly any fog in the second case. Permutations of parametrization schemes for boundary-layer mixing, radiation and microphysics, each for two levels of complexity, have been evaluated within the WRF model. It appears that the boundary-layer formulation is critical for forecasting the fog onset, while for fog dispersal the choice of the microphysical scheme is a key element, where a double-moment scheme outperforms any of the single-moment schemes. Finally, the WRF model results appear to be relatively insensitive to horizontal grid spacing, but nesting deteriorates the modelled fog formation. Increasing the domain size leads to a more scattered character of the simulated fog. Model results with one-way or two-way nesting show approximately comparable results.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.