Blasting and Passivation Treatments for ASTM F139 Stainless Steel for Biomedical Applications: Effects on Surface Roughness, Hardening, and Localized Corrosion
详细信息    查看全文
  • 作者:Adriana L. Lemos Barboza (1)
    Kyung Won Kang (1)
    Rita D. Bonetto (3)
    Carlos L. Llorente (1) (4)
    Pablo D. Bilmes (1)
    Claudio A. Gervasi (1) (2) (4)

    1. Laboratorio de Investigaciones de Metalurgia F铆sica (LIMF)
    ; Facultad de Ingenier铆a UNLP ; Calle 1 y 47 ; CP 1900 ; La Plata ; Argentina
    3. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas (CONICET)
    ; Facultad de Ciencias Exactas UNLP ; Centro de Investigaci贸n y Desarrollo en Ciencias Aplicadas 鈥淒r. Jorge J. Ronco鈥?(CINDECA) ; La Plata ; 1900 ; Argentina
    4. Comisi贸n de Investigaciones Cient铆ficas de la Provincia de Buenos Aires (CICPBA)
    ; La Plata ; Buenos Aires ; Argentina
    2. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas (CONICET)
    ; Facultad de Ciencias Exactas UNLP ; Instituto de Investigaciones Fisicoqu铆micas Te贸ricas y Aplicadas (INIFTA) ; La Plata ; 1900 ; Argentina
  • 关键词:316 LVM stainless steel ; corrosion ; glass bead blasting ; hardness ; nitric acid passivation ; roughness parameters
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:24
  • 期:1
  • 页码:175-184
  • 全文大小:989 KB
  • 参考文献:1. B.D. Ratner, and A.S. Hoffman, / Thin Films, Grafts, and Coatings, Biomaterials Science: An Introduction to Materials in Medicine, 1st ed., B.D. Ratner, A.S. Hoffman, F.J. Schoen, and J.E. Lemons, Eds., Academic Press, 1996, p 105鈥?18
    2. C. Aparicio, F.J. Gil, C. Fonseca, M. Barbosa, and J.A. Planell, Corrosion Behaviour of Commercially Pure Titanium Shot Blasted with Different Materials and Sizes of Shot Particles for Dental Implant Applications, / Biomaterials, 2003, 24(2), p 263鈥?73 CrossRef
    3. A. Arvidsson, B.A. Sater, and A. Wennerberg, The Role of Functional Parameters for Topographical Characterization of Bone-Anchored Implants, / Clin. Implant Dent. Relat Res., 2006, 8(2), p 70鈥?6 CrossRef
    4. V. Barranco, M.L. Escudero, and M.C. Garc铆a-Alonso, 3D, Chemical and Electrochemical Characterization of Blasted Ti6Al4V Surfaces: Its Influence on the Corrosion Behaviour, / Electrochim. Acta, 2007, 52(13), p 4374鈥?384 CrossRef
    5. V. Barranco, E. Onofre, M.L. Escudero, and M.C. Garc铆a-Alonso, Characterization of Roughness and Pitting Corrosion of Surfaces Modified by Blasting and Thermal Oxidation, / Surf. Coat. Technol., 2010, 204(23), p 3783鈥?793 CrossRef
    6. M. Multigner, E. Frutos, J.L. Gonz谩lez-Carrasco, J.A. Jim茅nez, P. Mar铆n, and J. Ib谩帽ez, Influence of the Sandblasting on the Subsurface Microstructure of 316LVM Stainless Steel: Implications on the Magnetic and Mechanical Properties, / Mater. Sci. Eng. C, 2009, 29(4), p 1357鈥?360 CrossRef
    7. M. Multigner, S. Ferreira-Barrag谩ns, E. Frutos, M. Jaafar, J. Ib谩帽ez, P. Mar铆n, M.T. P茅rez-Prado, G. Gonz谩lez-Doncel, A. Asenjo, and J.L. Gonz谩lez-Carrasco, Superficial Severe Plastic Deformation of 316 LVM Stainless Steel Through Grit Blasting: Effects on Its Microstructure and Subsurface Mechanical Properties, / Surf. Coat. Technol., 2010, 205(7), p 1830鈥?837 CrossRef
    8. J.C. Galv谩n, L. Salda帽a, M. Multigner, A. Calzado-Mart铆n, M. Larrea, C. Serra, N. Vilaboa, and J.L. Gonz谩lez-Carrasco, Grit Blasting of Medical Stainless Steel: Implications on its Corrosion Behavior, Ion Release and Biocompatibility, / J. Mater. Sci. Mater. Med., 2012, 23(3), p 657鈥?66 CrossRef
    9. B. Arifvianto, S. Wibisono, and M. Mahardika, Influence of Grit Blasting Treatment Using Steel Slag Balls on the Subsurface Microhardness, Surface Characteristics and Chemical Composition of Medical Grade 316L Stainless Steel, / Surf. Coat. Technol., 2012, 210, p 176鈥?82 CrossRef
    10. F. Reidenbach, / ASM Metals Handbook Volume 5: Surface Engineering, 10th ed., ASM International, 1994
    11. K. Poorna Chander, M. Vashista, K. Sabiruddin, S. Paul, and P.P. Bandyopadhyay, Effects of Grit Blasting on Surface Properties of Steel Substrates, / Mater. Des., 2009, 30(8), p 2895鈥?902 CrossRef
    12. F. Otsubo, K. Kishitake, T. Akiyama, and T. Terasaki, Characterization of Blasted Austenitic Stainless Steel and Its Corrosion Resistance, / J. Therm. Spray Technol., 2003, 12(4), p 555鈥?59 CrossRef
    13. A. BenRhouma, H. Sidhom, C. Braham, J. L茅dion, and M.E. Fitzpatrick, Effects of Surface Preparation on Pitting Resistance, Residual Stress, and Stress Corrosion Cracking in Austenitic Stainless Steels, / J. Mater. Eng. Perform., 2001, 10(5), p 507鈥?14 CrossRef
    14. A.W. Momber and Y.C. Wong, Overblasting Effects on Surface Properties of Low-Carbon Steel, / J. Coat. Technol. Res., 2005, 2(6), p 453鈥?61 CrossRef
    15. L.J. Korb, and D.L. Olson, / ASM Metals Handbook Volume 13: Corrosion, 9th ed., ASM International, 1987.
    16. A. Wennerberg and T. Albrektsson, Effects of Titanium Surface Topography on Bone Integration: A Systematic Review, / Clin. Oral Implants Res., 2009, 20(4), p 172鈥?84 CrossRef
    17. R. Singh and N.B. Dahotre, Corrosion Degradation and Prevention by Surface Modification of Biometallic Materials, / J. Mater. Sci. Mater. Med., 2007, 18(5), p 725鈥?51 CrossRef
    18. M.D. Pereda, K.W. Kang, R. Bonetto, C. Llorente, P. Bilmes, and C. Gervasi, Impact of Surface Treatment on the Corrosion Resistance of ASTM F138-F139 Stainless Steel for Biomedical Applications, / Proc. Mater. Sci., 2012, 1, p 446鈥?53 CrossRef
    19. E. Ponz, J.L. Ladaga, and R.D. Bonetto, Measuring Surface Topography with Scanning Electron Microscopy. I. EZEImage: A Program to Obtain 3D Surface Data, / Microsc. Microanal., 2006, 12(2), p 170鈥?77 CrossRef
    20. P. Bariani, L. De Chiffre, H.N. Hansen, and A. Horsewell, Investigation on the Traceability of Three Dimensional Scanning Electron Microscope Measurements Based on the Stereo-Pair Technique, / Precis. Eng., 2005, 29, p 219鈥?28 CrossRef
    21. K.W. Kang, M.D. Pereda, M.E. Canafoglia, P. Bilmes, C. Llorente, and R. Bonetto, Uncertainty Studies of Topographical Measurements on Steel Surface Corrosion by 3D Scanning Electron Microscopy, / Micron, 2012, 43, p 387鈥?95 CrossRef
    22. H. Ostadi and K. Jiang, D.W.L. Hukins., A Comparison of Surface Roughness Analysis Methods Applied to Urinary Catheters, / Precis. Eng., 2010, 34, p 798鈥?01 CrossRef
    23. ASM, / Standard Test Method for Microindentation Hardness of Materials鈥? E384-99, ASTM Standards
    24. H.C. Man and D.R. Gabe, The Determination of Pitting Potentials, / Corros. Sci., 1981, 21(4), p 323鈥?26 CrossRef
    25. M.D. Pereda, C.A. Gervasi, C.L. Llorente, and P.D. Bilmes, Microelectrochemical Corrosion Study of Supermartensitic Welds in Chloride-Containing Media, / Corros. Sci., 2011, 53(12), p 3934鈥?941 CrossRef
    26. K.J. Stout, P.J. Sullivan, W.P. Dong, E. Mainsah, N. Luo, T. Mathia, and H. Zahouani, / The Development of Methods for the Characterization of Roughness in Three Dimensions, University of Birmingham, Commission of the European Communities, Great Britain, 1993
    27. W.P. Dong, P.J. Sullivan, and K.J. Stout, Comprehensive Study of Parameters for Characterising Three- Dimensional Surface Topography: III: Parameters for Characterising Amplitude and Some Functional Properties, / Wear, 1994, 178(1鈥?), p 29鈥?3 CrossRef
    28. M. Bigerelle, D. Najjar, T. Mathia, A. Iost, T. Coorevits, and K. Anselme, An Expert System to Characterise the Surfaces Morphological Properties According to their Tribological Functionalities: The Relevance of a Pair of Roughness Parameters, / Tribol. Int., 2013, 59, p 190鈥?02 CrossRef
    29. L.T. Brown, 鈥淭he Use of 3D Surface Analysis Techniques to Investigate the Wear of Matt Surface Finish Femoral Stems in Total Hip Replacement鈥? Ph.D. Thesis, University of Huddersfield, 2006
    30. C. Cionea, 鈥淢icrostructural Evolution of Surface Layers during Electrolytic Plasma Processing鈥? Ph.D. Thesis, University of Texas at Arlington, 2010
    31. M. Niemczewska-Wojcik, The Influence of the Surface Geometric Structure on the Functionality of Implants, / Wear, 2011, 271(3鈥?), p 596鈥?03 CrossRef
    32. J. L枚berg, 鈥淚ntegrated Biomechanical, Electronic and Topographic Characterization of Titanium Dental Implants鈥? Ph.D. Thesis, University of Gothenburg, 2011
    33. M. Faller, S. Buzzi, and O. Trzebiatowski, Corrosion Behaviour of Glass-Bead Blasted Stainless Steel Sheets and Other Sheets with Dull Surface Finish in a Chloride Solution, / Mater. Corros., 2005, 56(6), p 373鈥?78 CrossRef
    34. P. O鈥橦are, B.J. Meenan, G.A. Burke, G. Byrne, D. Dowling, and J.A. Hunt, Biological Responses to Hydroxyapatite Surfaces Deposited Via a Co-Incident Microblasting Technique, / Biomaterials, 2010, 31(3), p 515鈥?22 CrossRef
    35. R.A. Gittens, T. McLachlan, R. Olivares-Navarrete, Y. Cai, S. Berner, R. Tannenbaum, Z. Schwartz, K.H. Sandhage, and B.D. Boyan, The Effects of Combined Micron-/Submicron-Scale Surface Roughness and Nanoscale Features on Cell Proliferation and Differentiation, / Biomaterials, 2011, 32(13), p 3395鈥?403 CrossRef
    36. T. Provder and B. Kunz, Application of Profilometry and Fractal Analysis to the Characterization of Coatings Surface Roughness, / Prog. Org. Coat., 1996, 27(1鈥?), p 219鈥?26 CrossRef
    37. S. Amada and T. Hirose, Influence of Grit Blasting Pre-Treatment on the Adhesion Strength of Plasma Sprayed Coatings: Fractal Analysis of Roughness, / Surf. Coat. Technol., 1998, 102(1鈥?), p 132鈥?37 CrossRef
    38. D. Risovi膰, S.M. Polja膷ek, and M. Gojo, On Correlation Between Fractal Dimension and Profilometric Parameters in Characterization of Surface Topographies, / Appl. Surf. Sci., 2009, 255(7), p 4283鈥?288 CrossRef
    39. X. Liang, B. Lin, X. Han, and S. Chen, Fractal Analysis of Engineering Ceramics Ground Surface, / Appl. Surf. Sci., 2012, 258(17), p 6406鈥?415 CrossRef
    40. R.D. Bonetto, J.L. Ladaga, and E. Ponz, Measuring Surface Topography by Scanning Electron Microscopy. II. Analysis of Three Estimators of Surface Roughness in Second Dimension and Third Dimension, / Microsc. Microanal., 2006, 12(2), p 178鈥?86 CrossRef
    41. W.S. Rasband, ImageJ, U.S. National Institutes of Health, Bethesda, MD, USA, 2012. http://rsb.info.nih.gov/ij/index.html
    42. V. Azar, B. Hashemi, and M. RezaeeYazdi, The Effect of Shot Peening on Fatigue and Corrosion Behavior of 316L Stainless Steel in Ringer鈥檚 Solution, / Surf. Coat. Technol., 2010, 204(21鈥?2), p 3546鈥?551 CrossRef
    43. F.J. Gil, J.A. Planell, A. Padr贸s, and C. Aparicio, The Effect of Shot Blasting and Heat Treatment on the Fatigue Behavior of Titanium for Dental Implant Applications, / Dental Mater., 2007, 23(4), p 486鈥?91 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Materials Science
    Tribology, Corrosion and Coatings
    Quality Control, Reliability, Safety and Risk
    Engineering Design
  • 出版者:Springer New York
  • ISSN:1544-1024
文摘
Due to the combination of good biofunctionality and biocompatibility at low cost, AISI 316 low carbon vacuum melting (LVM) stainless steel, as considered in ASTM F139 standard, is often the first choice for medical implants, particularly for use in orthopedic surgery. Proper surface finish must be provided to ensure adequate interactions of the alloy with human body tissues that in turn allows the material to deliver the desired performance. Preliminary studies performed in our laboratory on AISI 316LVM stainless steel surfaces modified by glass bead blasting (from industrial supplier) followed by different nitric acid passivation conditions disclosed the necessity to extend parameters of the surface treatments and to further consider roughness, pitting corrosion resistance, and surface and subsurface hardening measurements, all in one, as the most effective characterization strategy. This was the approach adopted in the present work. Roughness assessment was performed by means of amplitude parameters, functional parameters, and an estimator of the fractal dimension that characterizes surface topography. We clearly demonstrate that the blasting treatment should be carried out under controlled conditions in order to obtain similar surface and subsurface properties. Otherwise, a variation in one of the parameters could modify the surface properties, exerting a profound impact on its application as biomaterial. A passivation step is necessary to offset the detrimental effect of blasting on pitting corrosion resistance.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.