Imaging oxygen in neural cell and tissue models by means of anionic cell-permeable phosphorescent nanoparticles
详细信息    查看全文
  • 作者:Ruslan I. Dmitriev (1)
    Sergey M. Borisov (2)
    Alina V. Kondrashina (1)
    Janelle M. P. Pakan (3)
    Ujval Anilkumar (4)
    Jochen H. M. Prehn (4)
    Alexander V. Zhdanov (1)
    Kieran W. McDermott (3)
    Ingo Klimant (2)
    Dmitri B. Papkovsky (1)
  • 关键词:Biomaterials ; Cell and tissue oxygen ; Intracellular oxygen probe ; Multiplexed detection ; Nanosensors ; Phosphorescence quenching microscopy ; PLIM
  • 刊名:Cellular and Molecular Life Sciences (CMLS)
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:72
  • 期:2
  • 页码:367-381
  • 全文大小:4,625 KB
  • 参考文献:1. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2009) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110(5):2620鈥?640 CrossRef
    2. Sch盲ferling M (2012) The art of fluorescence imaging with chemical sensors. Angew Chem Int Ed 51(15):3532鈥?554. doi:10.1002/anie.201105459 CrossRef
    3. Algar WR, Prasuhn DE, Stewart MH, Jennings TL, Blanco-Canosa JB, Dawson PE, Medintz IL (2011) The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug Chem 22(5):825鈥?58 CrossRef
    4. Canton I, Battaglia G (2012) Endocytosis at the nanoscale. Chem Soc Rev 41(7):2718鈥?739 CrossRef
    5. Soenen SJ, Himmelreich U, Nuytten N, Pisanic TR, Ferrari A, De Cuyper M (2010) Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small 6(19):2136鈥?145 CrossRef
    6. Karamchand L, Kim G, Wang S, Hah HJ, Ray A, Jiddou R, Koo Lee Y-E, Philbert MA, Kopelman R (2013) Modulation of hydrogel nanoparticle intracellular trafficking by multivalent surface engineering with tumor targeting peptide. Nanoscale 5(21):10327鈥?0344. doi:10.1039/c3nr00908d CrossRef
    7. Koo Lee Y-E, Ulbrich EE, Kim G, Hah H, Strollo C, Fan W, Gurjar R, Koo S, Kopelman R (2010) Near infrared luminescent oxygen nanosensors with nanoparticle matrix tailored sensitivity. Anal Chem 82(20):8446鈥?455. doi:10.1021/ac1015358 CrossRef
    8. Napp J, Behnke T, Fischer L, W眉rth C, Wottawa M, Katschinski DM, Alves F, Resch-Genger U, Sch盲ferling M (2011) Targeted luminescent near-infrared polymer-nanoprobes for in vivo imaging of tumor hypoxia. Anal Chem 83(23):9039鈥?046. doi:10.1021/ac201870b CrossRef
    9. Xiang H, Cheng J, Ma X, Zhou X, Chruma JJ (2013) Near-infrared phosphorescence: materials and applications. Chem Soc Rev. doi:10.1039/c3cs60029g
    10. Dmitriev RI, Papkovsky DB (2012) Optical probes and techniques for O2 measurement in live cells and tissue. Cell Mol Life Sci 69(12):2025鈥?039 CrossRef
    11. Quaranta M, Borisov SM, Klimant I (2012) Indicators for optical oxygen sensors. Bioanal Rev 4(2鈥?):115鈥?57 CrossRef
    12. Ruggi A, van Leeuwen FW, Velders AH (2011) Interaction of dioxygen with the electronic excited state of Ir(III) and Ru (II) complexes: principles and biomedical applications. Coord Chem Rev 255(21):2542鈥?554 CrossRef
    13. Lee Y-EK, Kopelman R, Smith R (2009) Nanoparticle PEBBLE sensors in live cells and in vivo. Annu Rev Anal Chem (Palo Alto, Calif) 2:57 CrossRef
    14. Devor A, Sakad啪i膰 S, Yaseen MA, Roussakis E, Tian P, Slovin H, Vanzetta I, Teng I, Saisan PA, Sinks LE (2014) Functional imaging of cerebral oxygenation with intrinsic optical contrast and phosphorescent probes. Optical imaging of neocortical dynamics. Springer, Berlin, pp 225鈥?53 CrossRef
    15. Papkovsky DB, Dmitriev RI (2013) Biological detection by optical oxygen sensing. Chem Soc Rev 42(22):8700鈥?732 CrossRef
    16. Tsytsarev V, Arakawa H, Borisov S, Pumbo E, Erzurumlu RS, Papkovsky DB (2013) In vivo imaging of brain metabolism activity using a phosphorescent oxygen-sensitive probe. J Neurosci Methods 216(2):146鈥?51 CrossRef
    17. Dmitriev RI, Zhdanov AV, Nolan YM, Papkovsky DB (2013) Imaging of neurosphere oxygenation with phosphorescent probes. Biomaterials 34(37):9307鈥?317 CrossRef
    18. Lambrechts D, Roeffaers M, Kerckhofs G, Roberts SJ, Hofkens J, Van de Putte T, Van Oosterwyck H, Schrooten J (2013) Fluorescent oxygen sensitive microbead incorporation for measuring oxygen tension in cell aggregates. Biomaterials 34(4):922鈥?29 CrossRef
    19. Dmitriev RI, Kondrashina AV, Koren K, Klimant I, Zhdanov AV, Pakan JMP, McDermott KW, Papkovsky DB (2014) Small molecule phosphorescent probes for O2 imaging in 3D tissue models. Biomater Sci 2:853鈥?66. doi:10.1039/c3bm60272a CrossRef
    20. Dmitriev RI, Zhdanov AV, Jasionek G, Papkovsky DB (2012) Assessment of cellular oxygen gradients with a panel of phosphorescent oxygen-sensitive probes. Anal Chem 84(6):2930鈥?938 CrossRef
    21. Zhdanov AV, Dmitriev RI, Golubeva AV, Gavrilova SA, Papkovsky DB (1830) Chronic hypoxia leads to a glycolytic phenotype and suppressed HIF-2 signaling in PC12 cells. Biochim Biophys Acta Gen Subj 6:3553鈥?569
    22. Zhdanov AV, Waters AH, Golubeva AV, Dmitriev RI, Papkovsky DB (1837) Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling. Biochim Biophys Acta Bioenerg 1:51鈥?2
    23. Apreleva SV, Wilson DF, Vinogradov SA (2006) Tomographic imaging of oxygen by phosphorescence lifetime. Appl Opt 45(33):8547鈥?559 CrossRef
    24. Zhdanov AV, Ogurtsov VI, Taylor CT, Papkovsky DB (2010) Monitoring of cell oxygenation and responses to metabolic stimulation by intracellular oxygen sensing technique. Integr Biol 2(9):443鈥?51 CrossRef
    25. Takahashi E, Asano K (2002) Mitochondrial respiratory control can compensate for intracellular O2 gradients in cardiomyocytes at low Po 2. Am J Physiol Heart Circ Physiol 283(3):H871鈥揌878
    26. Finikova OS, Lebedev AY, Aprelev A, Troxler T, Gao F, Garnacho C, Muro S, Hochstrasser RM, Vinogradov SA (2008) Oxygen microscopy by two-photon-excited phosphorescence. ChemPhysChem 9(12):1673鈥?679 CrossRef
    27. Mik EG, Stap J, Sinaasappel M, Beek JF, Aten JA, van Leeuwen TG, Ince C (2006) Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin IX. Nat Methods 3(11):939鈥?45 CrossRef
    28. Clanton T, Hogan M, Gladden L (2013) Regulation of cellular gas exchange, oxygen sensing, and metabolic control. Compr Physiol. doi:10.1002/cphy.c120030
    29. Ereci艅ska M, Silver IA (2001) Tissue oxygen tension and brain sensitivity to hypoxia. Respir Physiol 128(3):263鈥?76 CrossRef
    30. Mohyeldin A, Garz贸n-Muvdi T, Qui帽ones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7(2):150鈥?61 CrossRef
    31. Toussaint O, Weemaels G, Debacq-Chainiaux F, Scharffetter-Kochanek K, Wlaschek M (2011) Artefactual effects of oxygen on cell culture models of cellular senescence and stem cell biology. J Cell Physiol 226(2):315鈥?21 CrossRef
    32. Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology 24(2):97鈥?06 CrossRef
    33. McHugh SB, Fillenz M, Lowry JP, Rawlins JNP, Bannerman DM (2011) Brain tissue oxygen amperometry in behaving rats demonstrates functional dissociation of dorsal and ventral hippocampus during spatial processing and anxiety. Eur J Neurosci 33(2):322鈥?37 CrossRef
    34. Choi SW, Gerencser AA, Ng R, Flynn JM, Melov S, Danielson SR, Gibson BW, Nicholls DG, Bredesen DE, Brand MD (2012) No consistent bioenergetic defects in presynaptic nerve terminals isolated from mouse models of Alzheimer鈥檚 disease. J Neurosci 32(47):16775鈥?6784 CrossRef
    35. Nicholls DG, Johnson-Cadwell L, Vesce S, Jekabsons M, Yadava N (2007) Bioenergetics of mitochondria in cultured neurons and their role in glutamate excitotoxicity. J Neurosci Res 85(15):3206鈥?212. doi:10.1002/jnr.21290 CrossRef
    36. Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373鈥?79. doi:10.1038/nature12517 CrossRef
    37. Noraberg J, Kristensen BW, Zimmer J (1999) Markers for neuronal degeneration in organotypic slice cultures. Brain Res Protoc 3(3):278鈥?90. doi:10.1016/S1385-299X(98)00050-6 CrossRef
    38. Zimmer J, Kristensen BW, Jakobsen B, Noraberg J (2000) Excitatory amino acid neurotoxicity and modulation of glutamate receptor expression in organotypic brain slice cultures. Amino Acids 19(1):7鈥?1 CrossRef
    39. Kazmi S, Salvaggio AJ, Estrada AD, Hemati MA, Shaydyuk NK, Roussakis E, Jones TA, Vinogradov SA, Dunn AK (2013) Three-dimensional mapping of oxygen tension in cortical arterioles before and after occlusion. Biomed Optics Express 4(7):1061鈥?073 CrossRef
    40. Lecoq J, Parpaleix A, Roussakis E, Ducros M, Houssen YG, Vinogradov SA, Charpak S (2011) Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels. Nat Med 17(7):893鈥?98 CrossRef
    41. Wolfbeis OS (2013) Editorial: probes, sensors, and labels: Why is real progress slow? Angew Chem Int Ed 52(38):9864鈥?865. doi:10.1002/anie.201305915 CrossRef
    42. Kondrashina AV, Dmitriev RI, Borisov SM, Klimant I, O鈥橞rien I, Nolan YM, Zhdanov AV, Papkovsky DB (2012) A phosphorescent nanoparticle-based probe for sensing and imaging of (Intra) cellular oxygen in multiple detection modalities. Adv Funct Mater 22(23):4931鈥?939. doi:10.1002/adfm.201201387 CrossRef
    43. Liu H, Yang H, Hao X, Xu H, Lv Y, Xiao D, Wang H, Tian Z (2013) Development of polymeric nanoprobes with improved lifetime dynamic range and stability for intracellular oxygen sensing. Small 9(15):2639鈥?648 CrossRef
    44. X-d Wang, Gorris HH, Stolwijk JA, Meier RJ, Groegel DB, Wegener J, Wolfbeis OS (2011) Self-referenced RGB colour imaging of intracellular oxygen. Chem Sci 2(5):901鈥?06 CrossRef
    45. X-d Wang, Stolwijk JA, Lang T, Sperber M, Meier RJ, Wegener J, Wolfbeis OS (2012) Ultra-small, highly stable, and sensitive dual nanosensors for imaging intracellular oxygen and pH in cytosol. J Am Chem Soc 134(41):17011鈥?7014 CrossRef
    46. Wu C, Bull B, Christensen K, McNeill J (2009) Ratiometric single-nanoparticle oxygen sensors for biological imaging. Angew Chem Int Ed 48(15):2741鈥?745 CrossRef
    47. Yim H, S-j Park, Bae YH, Na K (2013) Biodegradable cationic nanoparticles loaded with an anticancer drug for deep penetration of heterogeneous tumours. Biomaterials 34(31):7674鈥?682 CrossRef
    48. Owens Iii DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93鈥?02. doi:10.1016/j.ijpharm.2005.10.010 CrossRef
    49. Ingram J, Zhang C, Cressman JR, Hazra A, WEI Y, Koo Y-E, Ziburkus J, Kopelman R, Xu J, Schiff SJ (2014) Oxygen and seizure dynamics: I. Experiments. J Neurophysiol 00540:02013
    50. Ingram JM, Zhang C, Xu J, Schiff SJ (2013) FRET excited ratiometric oxygen sensing in living tissue. J Neurosci Methods 214(1):45鈥?1. doi:10.1016/j.jneumeth.2013.01.002 CrossRef
    51. Koren K, Dmitriev RI, Borisov SM, Papkovsky DB, Klimant I (2012) Complexes of IrIII-Octaethylporphyrin with Peptides as Probes for Sensing Cellular O2. Chembiochem 13(8):1184鈥?190. doi:10.1002/cbic.201200083 CrossRef
    52. Borisov SM, Mayr T, Mistlberger G, Waich K, Koren K, Chojnacki P, Klimant I (2009) Precipitation as a simple and versatile method for preparation of optical nanochemosensors. Talanta 79(5):1322鈥?330 CrossRef
    53. Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1鈥?6 CrossRef
    54. Yang W-H, Smolen VF, Peppas NA (1981) Oxygen permeability coefficients of polymers for hard and soft contact lens applications. J Membr Sci 9(1):53鈥?7 CrossRef
    55. Fercher A, Borisov SM, Zhdanov AV, Klimant I, Papkovsky DB (2011) Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles. ACS Nano 5(7):5499鈥?508 CrossRef
    56. Mendes AN, Hubber I, Siqueira M, Barbosa GM, de Lima Moreira D, Holandino C, Pinto JC, Nele M (2012) Preparation and Cytotoxicity of Poly (Methyl Methacrylate) Nanoparticles for Drug Encapsulation. In: Macromolecular Symposia, Wiley Online Library, pp 34鈥?0
    57. Araujo L, Sheppard M, L枚benberg R, Kreuter J (1999) Uptake of PMMA nanoparticles from the gastrointestinal tract after oral administration to rats: modification of the body distribution after suspension in surfactant solutions and in oil vehicles. Int J Pharm 176(2):209鈥?24 CrossRef
    58. Ivanov AI (2008) Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? In: Exocytosis and Endocytosis. Springer, pp 15鈥?3
    59. Carraway E, Demas J, DeGraff B, Bacon J (1991) Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes. Anal Chem 63(4):337鈥?42 CrossRef
    60. DeGraff B, Demas J (2005) Luminescence-based oxygen sensors. Reviews in Fluorescence 2005:125鈥?51
    61. Foster KA, Galeffi F, Gerich FJ, Turner DA, M眉ller M (2006) Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Prog Neurobiol 79(3):136鈥?71 CrossRef
    62. Pakan JM, McDermott KW (2014) A method to investigate radial glia cell behavior using two-photon time-lapse microscopy in an ex vivo model of spinal cord development. Front Neuroanat 8:22. doi:10.3389/fnana.2014.00022 CrossRef
    63. Schmid RS, Yokota Y, Anton E (2006) Generation and characterization of brain lipid-binding protein promoter-based transgenic mouse models for the study of radial glia. Glia 53(4):345鈥?51 CrossRef
    64. Becker W (2012) Fluorescence lifetime imaging鈥攖echniques and applications. J Microsc 247(2):119鈥?36. doi:10.1111/j.1365-2818.2012.03618.x CrossRef
    65. Ingaramo M, York AG, Wawrzusin P, Milberg O, Hong A, Weigert R, Shroff H, Patterson GH (2014) Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue. Proc Natl Acad Sci 111(14):5254鈥?259 CrossRef
    66. Pampaloni F, Ansari N, Stelzer EH (2013) High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell Tissue Res 352:161鈥?77 CrossRef
    67. Golub AS, Pittman RN (2008) PO2 measurements in the microcirculation using phosphorescence quenching microscopy at high magnification. Am J Physiol Heart Circ Physiol 63(6):H2905 CrossRef
    68. Devor A, Sakadzic S, Srinivasan VJ, Yaseen MA, Nizar K, Saisan PA, Tian P, Dale AM, Vinogradov SA, Franceschini MA, Boas DA (2012) Frontiers in optical imaging of cerebral blood flow and metabolism. J Cereb Blood Flow Metab 32(7):1259鈥?276 CrossRef
    69. Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, Zaher W, Mortensen LJ, Alt C, Turcotte R, Yusuf R, Cote D, Vinogradov SA, Scadden DT, Lin CP (2014) Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature advance online publication. doi:10.1038/nature13034
    70. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6(1):12鈥?1. doi:10.1002/smll.200901158 CrossRef
    71. Nichols AJ, Roussakis E, Klein OJ, Evans CL (2014) Click-Assembled, Oxygen-Sensing Nanoconjugates for Depth-Resolved, Near-Infrared Imaging in a 3 D Cancer Model. Angew Chem Int Ed n/a-n/a. doi:10.1002/anie.201311303
    72. Dmitriev RI, Ropiak HM, Ponomarev GV, Yashunsky DV, Papkovsky DB (2011) Cell-penetrating conjugates of coproporphyrins with oligoarginine peptides: rational design and application for sensing intracellular O2. Bioconjugate Chem 22(12):2507鈥?518 CrossRef
    73. Anilkumar U, Weisov谩 P, D眉ssmann H, Concannon CG, K枚nig H-G, Prehn JHM (2013) AMP-activated protein kinase (AMPK)鈥搃nduced preconditioning in primary cortical neurons involves activation of MCL-1. J Neurochem 124(5):721鈥?34. doi:10.1111/jnc.12108 CrossRef
    74. Stoppini L, Buchs P-A, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37(2):173鈥?82 CrossRef
    75. Murphy RC, Messer A (2001) Gene transfer methods for CNS organotypic cultures: a comparison of three nonviral methods. Mol Ther 3(1):113鈥?21 CrossRef
  • 作者单位:Ruslan I. Dmitriev (1)
    Sergey M. Borisov (2)
    Alina V. Kondrashina (1)
    Janelle M. P. Pakan (3)
    Ujval Anilkumar (4)
    Jochen H. M. Prehn (4)
    Alexander V. Zhdanov (1)
    Kieran W. McDermott (3)
    Ingo Klimant (2)
    Dmitri B. Papkovsky (1)

    1. School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
    2. Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
    3. Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
    4. Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biomedicine
    Life Sciences
    Biochemistry
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9071
文摘
Cell-permeable phosphorescent probes enable the study of cell and tissue oxygenation, bioenergetics, metabolism, and pathological states such as stroke and hypoxia. A number of such probes have been described in recent years, the majority consisting of cationic small molecule and nanoparticle structures. While these probes continue to advance, adequate staining for the study of certain cell types using live imaging techniques remains elusive; this is particularly true for neural cells. Here we introduce novel probes for the analysis of neural cells and tissues: negatively charged poly(methyl methacrylate-co-methacrylic acid)-based nanoparticles impregnated with a phosphorescent Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP) dye (this form is referred to as PA1), and with an additional reference/antennae dye poly(9,9-diheptylfluorene-alt-9,9-di-p-tolyl-9H-fluorene) (this form is referred to as PA2). PA1 and PA2 are internalised by endocytosis, result in efficient staining in primary neurons, astrocytes, and PC12 cells and multi-cellular aggregates, and allow for the monitoring of local O2 levels on a time-resolved fluorescence plate reader and PLIM microscope. PA2 also efficiently stains rat brain slices and permits detailed O2 imaging experiments using both one and two-photon intensity-based modes and PLIM modes. Multiplexed analysis of embryonic rat brain slices reveals age-dependent staining patterns for PA2 and a highly heterogeneous distribution of O2 in tissues, which we relate to the localisation of specific progenitor cell populations. Overall, these anionic probes are useful for sensing O2 levels in various cells and tissues, particularly in neural cells, and facilitate high-resolution imaging of O2 in 3D tissue models.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.