Protein hydrolysates from Bluefin Tuna (Thunnus thynnus) heads as influenced by the extent of enzymatic hydrolysis
详细信息    查看全文
  • 作者:Ali Bougatef (1) ali.bougatef79@gmail.com
    Rafik Balti (1)
    Anissa Haddar (1)
    Kemel Jellouli (1)
    Nabil Souissi (2)
    Moncef Nasri (1)
  • 关键词:protein hydrolysate &#8211 ; tuna heads &#8211 ; protease &#8211 ; antioxidant activity &#8211 ; functional properties
  • 刊名:Biotechnology and Bioprocess Engineering
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:17
  • 期:4
  • 页码:841-852
  • 全文大小:461.2 KB
  • 参考文献:1. Gildberg, A. (1993) Enzymatic processing of marine raw materials. Proc. Biochem. 28: 1–15.
    2. Quaglia, G. B. and E. Orban (1987) Enzymic solubilisation of proteins of sardine (Sardina pilchardus) by commercial proteases. J. Sci. Food Agric. 38: 263–269.
    3. Benjakul, S. and M. T. Morrissey (1997) Protein hydrolysates from Pacific whiting solid wastes. J. Agric. Food Chem. 45: 3423–3430.
    4. Moure, A., J. Sineiro, H. Dominguez, and J. C. Parajo (2006) Functionality of oil seed protein products: A review. Food Res. Int. 39: 945–963.
    5. Kristinsson, H. G. and B. A. Rasco (2000) Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. J. Agric. Food Chem. 48: 657–666.
    6. Panyam, D. and A. Kilara (1996) Enhancing the functionality of food proteins by enzymatic modification. Trends Food Sci. Technol. 7: 120–125.
    7. Pena-Ramos, E. A. and Y. L. Xiong (2002) Antioxidant activity of soy protein hydrolysates in a liposomial system. J. Food Sci. 67: 2952–2956.
    8. Sakanaka, S., Y. Tachibana, N. Ishihara, and L. R. Juneja (2004) Antioxidant activity of egg-yolk protein hydrolysates in a linoleic acid oxidation system. Food Chem. 86: 99–103.
    9. Suetsuna, K. (2000) Antioxidant peptides from the protease digest of prawn (Penaeus Japonicus) muscle. Marine Biotechnol. 2: 5–10.
    10. Jao, C. L. and W. C. Ko (2002) 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging by protein hydrolysates from tuna cooking juice. Fisheries Sci. 68: 430–435.
    11. Jun, S. Y., P. J. Park, W. K. Jung and S. K. Kim (2004) Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. Eur. Food Res. Technol. 219: 20–26.
    12. Je, J. Y., P. J. Park, and S. K. Kim (2005) Antioxidant activity of peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Res. Inter. 38: 45–50.
    13. Sathivel, S., P. J. Bechtel, J. Babbitt, S. Smiley, C. Crapo, K. D. Reppond, and W. Prinyawiwatkul (2003) Biochemical and functional properties of herring (Clupea harengus) byproduct hydrolysates. J. Food Sci. 68: 2196–2200.
    14. Wu, H. C., H. M. Chen, and C. Y. (2003) Shiau, Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 36: 949–957.
    15. Amarowicz, R. and F. Shahidi (1997) Antioxidant activity of peptide fractions of capelin protein hydrolysates. Food Chem. 58: 355–359.
    16. Ito, N., M. Hirose, S. Fukushima, H. Tsuda, T. Shirai, and M. Tatematsu (1986) Studies on antioxidants: Their carcinogenic and modifying effects on chemical carcinogenesis. Food Chem. Toxicol. 24: 1071–1082.
    17. Rice-Evans, C. A., N. J. Miller, and G. Paganda (1996) Structureantioxidant activity relationships of flavonoids and phenolic acids. Free Rad. Biol. Med. 20: 933–956.
    18. Katalinic, V., M. Milos, T. Kulisic, and M. Jukic (2006) Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem 94: 550–557.
    19. Wong, C. C., H. B. Li, K. W. Cheng, and F. Chen (2006) Systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem. 97: 705–711.
    20. Mendis, E., N. Rajapakse, H. G. Byun, and S. K. Kim (2005) Investigation of jumbo squid (Disidicus gigas) skin gelatin peptides for their antioxidant effects. Life Sci. 77: 2166–2178.
    21. Rajapakse, N., E. Mendis, H. G. Byun, and S. K. Kim (2005) Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J. Nutr. Biochem. 16: 562–569.
    22. Qian, Z. J., W. K. Jung, H. G. Byun, and S. K. Kim (2008) Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage. Bioresour. Technol. 99: 3365–3371.
    23. Jung, W. K., N. Rajapakse, and S. K. Kim (2005) Antioxidative activity of a low molecular weight peptide derived from the sauce of fermented blue mussel, Mytillus edulis. Eur. Food Res. Technol. 220: 535–539.
    24. Kim, S. Y., J. Y. Je, and S. K. Kim (2007) Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. J. Nut. Biochem. 18: 31–38.
    25. Je, J. Y., Z. J. Qian, H. G. Byun, and S. K. Kim (2007) Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Proc. Biochem. 42: 840–846.
    26. Je, J. Y., Z. J. Qian, S. H. Lee, H. G. Byun, and S. K. Kim (2008) Purification and antioxidant properties of bigeye tuna (Thunnus obesus) dark muscle peptide on free radical-mediated oxidation systems. J. Med. Food 11: 629–637.
    27. Slizyte, R., R. Mozuraityte, O. Martinez-Alvarez, E. Falch, M. Fouchereau-Peron, and T. Rustad (2009) Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones. Proc. Biochem. 44: 668–677.
    28. Samaranayaka, A. G. P. and C. Y. Li-Chan (2008) Autolysisassisted production of fish protein hydrolysates with antioxidant properties from Pacific hake (Merluccius productus). Food Chem. 107: 768–776.
    29. Thiansilaku, Y., S. Benjakul, and F. Shahidi (2007) Antioxidative activity of protein hydrolysate from round scad muscle using alcalase and flavourzyme. J. Food Biochem. 31: 266–287.
    30. Cho, S. S., H. K. Lee, C. Y. Yu, M. J. Kim, E. S. Seong, B. K. Ghimire, E. H. Son, M. G. Choung, and J. D. Lim (2008) Isolation and characterization of bioactive peptides from Hwangtae (yellowish dried Alaska pollack) protein hydrolysate. J. Food Sci. Nutr. 13: 196–203.
    31. Ranathunga, S., N. Rajapakse, and S. K. Kim (2006) Purification and characterization of antioxidantative peptide derived from muscle of conger eel (Conger myriaster). Eur. Food Res. Technol. 222: 310–315.
    32. Klompong, V., S. Benjakul, D. Kantachote, and F. Shahidi (2007) Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 102: 1317–1327.
    33. Sheih, I. C., T. K. Wu, and T. J. Fang (2009) Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresour. Technol. 100: 3419–3425.
    34. Haddar, A., A. Bougatef, R. Agrebi, A. Sellami-Kamoun, and M. Nasri (2009) A novel surfactant-stable alkaline serine-protease from a newly isolated Bacillus mojavensis A21. Purification and characterization. Proc. Biochem. 44: 29–35.
    35. Kembhavi, A. A., A. Kulkarni, and A. Pant (1993) Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No.64. Appl. Biochem. Biotechnol. 38: 83–92.
    36. Adler-Nissen, J. (1986) A review of food hydrolysis specific areas. pp. 57–109. In: J. Adler-Nissen (ed.). Enzymic hydrolysis of food proteins. Elsevier Applied Science Publishers, Copenhagen, Danemark.
    37. AOAC (1995) Official Methods of Analysis, Arlington, VA. Secs. 930.15-942.05.
    38. Bersuder, P., M. Hole, and G. Smith (1998) Antioxidants from a heated histidine-glucose model system. I: Investigation of the antioxidant role of histidine and isolation of antioxidants by high performance liquid chromatography. J. Am. Oil Chem. Soc. 75: 181–187.
    39. Yildirim, A., A. Mavi, and A. A. Kara (2001) Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem. 49: 4083–4089.
    40. Koleva, I. I., T. A. van Beek, J. P. H. Linssen, A. de Groot, and L. N. Evstatieva, (2002) Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochem. Anal. 13: 8–17.
    41. Decker, E. A. and B. Welch (1990) Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 38: 674–677.
    42. Tsumura, K., T. Saito, K. Tsuge, H. Ashida, W. Kugimiya, and K. Inouye (2005) Functional properties of soy protein hydrolysates obtained by selective proteolysis. LWT-Food Sci. Technol. 38: 255–261.
    43. Pearce, K. N. and J. E. Kinsella (1978) Emulsifying properties of proteins: Evaluation of a turbidimetric technique. J. Agric. Food Chem. 26: 716–723.
    44. Slizyte, R., E. Dauksas, E. Falch, I. Storrol, and T. Rustad (2005) Yield and composition of different fractions obtained after enzymatic hydrolysis of cod (Gadus morhua) by-products. Proc. Biochem. 40: 1415–1424.
    45. Zayas, J. F. (1997) Functionality of proteins in food. Springer, Berlin.
    46. Peterson, B. R. (1981) The impact of the enzymatic hydrolysis process on recovery and use of proteins. pp. 269–299. In: G. G. Birch, N. Blakebrough, and K. J. Parker (eds.). Enzymes and food processing. Elsevier Applied Science Publishers, London, UK.
    47. Gbogouri, G. A., M. Linder, J. Fanni, and M. Parmentier (2004) Influence of hydrolysis degree on the functional properties of salmon by-products hydrolysates. J. Food Sci. 69: 615–622.
    48. Linder, M., J. Fanni, and M. Parmentier (1996) Functional properties of veal bone hydrolysates. J. Food Sci. 61: 712–716.
    49. Sorgentini, D. A. and J. R. Wagner (2002) Comparative study of foaming properties of whey and isolate soy bean proteins. Food Res. Int. 35: 721–729.
    50. Mutilangi, W. A. M., D. Panyam, and A. Kilara (1995) Hydrolysates from proteolysis of heat-denatured whey proteins. J. Food Sci. 60: 1104–1109.
    51. Dickinson, E. and D. Lorient (1994) Emulsions. pp. 201–274. In: E. Dickinson and D. Lorient (eds.). Food macromolecules and colloids. The Royal Society of Chemistry, Cambridge, UK.
    52. Rahali, V., J. M. Chobert, T. Haertle, and J. Gueguen (2000) Emulsification of chemical and enzymatic hydrolysates of β-lactoglobulin: Characterization of the peptides adsorbed at the interface. Nahrung 44: 89–95.
    53. Jost, R., J. C. Monti, and J. J. Pahud (1977) Partial enzymatic hydrolysis of whey protein by trypsin. J. Dairy Sci. 60: 1387–1393.
    54. Wasswa, J., J. Tang, X. H. Gu, and X. Q. Yuan (2007) Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysate from grass carp (Ctenopharyngodon idella) skin. Food Chem. 104: 1698–1704.
    55. Shimada, K., K. Fujikawa, K. Yahara, and T. Nakamura (1992) Antioxidative properties of xanthan on the autioxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945–948.
    56. Mullally, M. M., D. M. O’Callaghan, R. J. FitzGerald, W. J. Donnelly, and J. P. Dalton (1995) Zymogen activation in pancreatic endoproteolytic preparations and influence on some whey protein characteristics. J. Food Sci. 60: 227–233.
    57. Gauthier, S. F., P. Paquin, Y. Pouliot, and S. Turgeon (1993) Surface activity and related functional properties of peptides obtained from whey proteins, J. Dairy Sci. 76: 321–328.
    58. Khantaphant, S. and S. Benjakul (2008) Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity. Comp. Biochem. Physiol. 151: 410–419.
    59. Dorman, H. J. D., M. Kosar, K. Kahlos, Y. Holm and R. Hiltunen (2003) Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agric. Food Chem. 51: 4563–4569.
    60. Kumazawa, S., M. Taniguchi, Y. Suzuki, M. Shimura, M. S. Kwon, and T. Nakayama (2002) Antioxidant activity of polyphenols in carob pods. J. Agric. Food Chem. 50: 373–377.
    61. Gordon, M. (2001) Antioxidants and food stability. pp. 7–21. In: J. Pokorny, N. Yanishlieva, and M. Gordon (eds.). Antioxidant in Food (). CRC Press, NY, USA.
    62. Sherwin, E. R. (1990) Antioxidant. pp. 139–193. In: A. L. Branen, P. M. Davidson, and S. Salminen (eds.). Food additives (). Marcel Dekker, NY, USA.
    63. Chobert, J. M., C. Bertrand-Harb, and M. G. Nicolas (1988) Solubility and emulsifying properties of caseins and whey proteins modified enzymatically by trypsin. J. Agric. Food Chem. 36: 883–892.
    64. Riisom, T., R. J. Sims, and J. A. Fioriti (1980) Effect of amino acids on the autoxidation of safflower oil in emulsions. J. Am. Oil Chem. Soc. 57: 354–359.
  • 作者单位:1. Laboratoire de G茅nie Enzymatique et de Microbiologie, Ecole Nationale d鈥橧ng茅nieurs de Sfax, B.P 鈥?173 3038, Sfax, Tunisia2. Institut National des Sciences et Technologies de la Mer, B.P. 鈥?035 3018, Sfax, Tunisia
  • ISSN:1976-3816
文摘
Functional properties and antioxidant activities of protein hydrolysates from tuna (Thunnus thynnus) heads (THPHs), with different degrees of hydrolysis, obtained by treatment with Bacillus mojavensis A21 alkaline proteases and Alcalase, were investigated. Protein content of all freeze-dried THPHs ranged from 73.74 卤 0.5 to 78.56 卤 1.2%. The THPHs had excellent solubility, compared to untreated tuna head proteins and possessed interfacial properties, which were governed by their concentrations. Similarly, at a degree of hydrolysis (DH) of 12 and 15%, > 90% nitrogen solubility was observed at all experimental pH values tested. The emulsifying activity index (EAI) and emulsion stability index (ESI) of both hydrolysates at different DHs decreased (p < 0.05) with increasing DH. At low DH (5%), hydrolysates exhibited strong emulsifying properties. All THPHs produced by the A21 proteases generally showed higher antioxidative activity than that of the Alcalase protein hydrolysates. The highest DPPH radical-scavenging activity (78 卤 2.1% at 3 mg/mL) was obtained with a DH of 15%. The IC50 value for the β-carotene bleaching assay was 0.5 卤 0.03 mg/mL. Alcalase (DH = 12%) and A21 (DH = 15%) protein hydrolysates contained glutamic acid/glutamine and arginine as the major amino acids, followed by lysine, aspartic acid/ asparagine, histidine, valine, phenylalanine, and leucine. In addition, the THPHs had a high percentage of essential amino acids, which made up 50.52 and 50.47%, of the protein hydrolysates obtained by the Alcalase and A21 proteases, respectively. Therefore, THPHs can be used as a promising source of functional peptides with antioxidant properties.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.