A theoretical study of CO adsorption on aluminum nitride nanotubes
详细信息    查看全文
  • 作者:Javad Beheshtian (1)
    Zargham Bagheri (2)
    Mohammad Kamfiroozi (3)
    Ali Ahmadi (4) ahmadi.iau@gmail.com
  • 关键词:Carbon monoxide &#8211 ; Aluminum nitride nanotubes &#8211 ; Density functional theory &#8211 ; Adsorption &#8211 ; B3LYP
  • 刊名:Structural Chemistry
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:23
  • 期:3
  • 页码:653-657
  • 全文大小:352.2 KB
  • 参考文献:1. Iijima S (1991) Nature 354:56
    2. Kang C, Maeng IH, Oh SJ, Son JK (2005) Appl Phys Lett 87:041908
    3. Gao H, Kong Y, Cui D, Ozkan CS (2003) Nano Lett 3:471
    4. Zurek B, Autschbach J (2004) J Am Chem Soc 126:13079
    5. Zhi C, Bando Y, Tan C, Golberg D (2005) Solid State Commun 135:67
    6. Oku T, Koi N, Suganuma K (2008) Diam Relat Mater 17:1805
    7. Golberg D, Bando Y, Sato T (2001) J Nanosci Nanotech 44:1561
    8. Golberg D, Bando Y, Kurashima K, Sato T (2000) Solid State Commun 116(1):1–6
    9. Zhou Z, Zhao JJ, Chen ZF, Schleyer PRJ (2006) Phys Chem B 110:25678
    10. Dinadayalane T, Leszczynski J (2010) Struct Chem 21:1155
    11. Zhang D, Zhang R (2003) Chem Phys Lett 371:426
    12. Tondare V, Balasubramanian C, Shende S, Joag D, Godbole V, Bhoraskar S, Bhadhade M (2002) Appl Phys Lett 80:4813
    13. Balasubramanian C, Bellucci S, Castrucci P, Crescenzi M, Bhoraskar S (2004) Chem Phys Lett 383:188
    14. Yin B, Bando Y, Zhu Y, Li M, Tang C, Golberg D (2005) Adv Mater 17:31
    15. Stan G, Ciobanu CV, Thayer TP, Wang GT, Creighton JR, Purushotham KP, Bendersky LA, Cook RF (2009) Nanotechnology 20:35706
    16. Fan Y (2011) Mater Lett 65:1900
    17. Contreras ML, Avila D, Alvarez J, Rozas R (2010) Struct Chem 21:573
    18. Peralta-Inga Z, Lane P, Murray J, Boyd S, Grice M, O’Connor C, Politzer P (2003) Nano Lett 3:21
    19. Snow ES, Perkins FK (2005) Nano Lett 5:2414
    20. Govind N, Andzelm J, Maiti A (2008) IEEE Sensors J 8:837
    21. Dinadayalane TC, Kaczmarek A, Lukaszewicz J, Leszczynski J (2007) J Phys Chem C 111:7376
    22. Kaczmarek A, Dinadayalane TC, Lukaszewicz J, Leszczynski J (2007) Int J Quantum Chem 107:2211
    23. Dinadayalane TC, Leszczynski J (2007) Chem Phys Lett 434:86
    24. Dinadayalene TC, Murray JS, Concha MC, Politzer P, Leszczynski J (2010) J Chem Theor Comp 6:1351
    25. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Science 287:622
    26. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Science 287:1801
    27. Peng S, Cho K (2003) Nano Lett 3:513
    28. Fagan SB, Filho AGS, Lima JOG, Filho JM, Ferreira OP, Mazali IO, Alves OL, Dresselhaus MS (2004) Nano Lett 4:1285
    29. Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Nano Lett 3:929
    30. Ahmadi A, Beheshtian J, Hadipour N (2011) Struct Chem 22:183
    31. Chen RJ, Choi HC, Bangsaruntip S, Yenilmez E, Tang X, Wang Q, Chang YL, Dai H (2004) J Am Chem Soc 126:1563
    32. Chen RJ, Zhang Y, Wang D, Dai H (2001) J Am Chem Soc 123:3838
    33. Ahmadi A, Kamfiroozi M, Beheshtian J, Hadipour N (2011) Struct Chem 22:1261
    34. Yu J, Huang K, Tang J (2008) Physica E 41:181
    35. Xu S, Wang C, Cui Y (2010) Struct Chem 21:519
    36. Mota R, Fagan SB, Fazzio A (2007) Surf Sci 601:4102
    37. Azizi K, Hashemianzadeh SM, Bahramifar S (2011) Curr Appl Phys 11:776
    38. Wang R, Zhang D, Sun W, Han Z, Liu C (2007) J Mol Struct THEOCHEM 806:93
    39. Baierle RJ, Schmidt TM, Fazzio A (2007) Solid State Commun 142(1–2):49–53
    40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, AlLaham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (1998) Gaussian Inc, Pittsburgh
    41. Beheshtian J, Kamfiroozi M, Bagheri, Z, Ahmadi A (2011) Phys E. doi:10.1016/j.physe.2011.09.016
    42. Beheshtian J, Soleymanabadi H, Kamfiroozi M, Bagheri Z, Ahmadi A (2011) J Mol Model. doi:10.1007/s00894-011-1256-4
    43. Riikonen S, Foster A, Krasheninnikov A, Nieminen R (2009) Phys Rev B 80:155429
    44. O’Boyle NM, Vos JG (2007) GaussSum, version 2.1; Dublin City University, Dublin, Ireland. Available at http://gausssum.sourceforge.net
    45. Morokuma K, Kitaura K (1981) In: Politzer P, Truhlar DG (eds) Chemical applications of atomic and molecular electrostatic potentials. Plenum Press, New York, pp 215–242
    46. Ahmadi A, Beheshtian J, Hadipour NL (2011) Physica E 43:1717
  • 作者单位:1. Department of Chemistry, Shahid Rajaee Teacher Training University, 16875-163, Tehran, Iran2. Physics Group, Science Department, Islamic Azad University, Islamshahr Branch, Islamshahr, 33135-369, Tehran, Iran3. Department of Chemistry, Islamic Azad University, Shiraz Branch, Shiraz, Iran4. Young Researchers Club, Islamic Azad University, Islamshahr Branch, Tehran, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Physical Chemistry
    Theoretical and Computational Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-9001
文摘
Adsorption of toxic CO molecule on single-walled aluminum nitride nanotubes (AlNNTs) was investigated using density functional theory calculations. A detailed analysis of the energetic, geometry, and electronic structure of various CO adsorptions on the tube exterior surface was performed. In contrast to carbon and BN nanotubes, our results indicated that AlNNTs can strongly interact with CO molecules. The adsorption energy of the most stable configuration was calculated to be about −0.25 eV. The Morokuma–Kitaura decomposition for molecular interaction energies was used to investigate the nature of C–Al bond in the most stable CO–AlNNT complex, demonstrating that electrostatic forces and polarization term are basic factors of attractive interaction between CO and AlNNT. They provide 37.9 and 40.4% of attractive interaction and charge transfer energies make a little contribution to the adsorption energy of CO.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.