Wood Anatomy of Brassicales: New Information, New Evolutionary Concepts
详细信息    查看全文
  • 作者:Sherwin Carlquist
  • 关键词:Ecological wood anatomy ; Fiber dimorphism ; Irreversibility ; Raylessness ; Wood xeromorphy ; Vestures
  • 刊名:The Botanical Review
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:82
  • 期:1
  • 页码:24-90
  • 全文大小:6,019 KB
  • 参考文献:Adamson, R. S. 1936. Notes on the stem structure of Boscia rehmanniana. Proceedings of the Royal Society of South Africa 23: 297–301.CrossRef
    Arnold, G. H. & L. G. M. Baas Becking. 1949. Notes on stem structure of Carica papaya. Annals of the Botanical Garden, Buitenzorg 51: 199–230.
    Baas, P. & E. A. Wheeler. 1996. Parallelism and reversibility in xylem evolution. A review. IAWA Journal 17: 351–364.CrossRef
    Bailey, I. W. 1936. The problem of differentiation and classification of tracheids, fiber-tracheids, and libriform fibers. Tropical Woods 45: 18–23.
    ——— 1944. The development of vessels in angiosperms in morphological research. American Journal of Botany 31: 421–428.CrossRef
    ——— & W. W. Tupper. 1918. Size variation in tracheary cells. 1. A comparison between the secondary xylems of vascular cryptogams, gymnosperms, and angiosperms. Proceedings of the American Academy of Arts and Sciences 54: 149–204.CrossRef
    Bolle, F. 1936. Resedaceae. In: A. Engler & K. Prantl (eds). Die natürlichen Pflanzenfamilien 17b: 659–682. Verlag Wilhelm Engelmann, Leipzig.
    Brodersen, C. R. & A. J. McElrone. 2013. Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Trends in Plant Science 4: 1–11.
    Carlquist, S. 1958. Wood anatomy of Heliantheae (Compositae). Tropical Woods 108: 1–30.
    ——— 1960. Wood anatomy of Astereae (Compositae). Tropical Woods 113: 54–84.
    ——— 1961. Comparative plant anatomy. Holt, Rinehart & Winston, New York.
    ——— 1962. A theory of paedomorphosis in dicotyledonous woods. Phytomorphology 12: 30–45.
    ——— 1966. Wood anatomy of Compositae: a summary, with factors controlling wood evolution. Aliso 6(2): 25–44.
    ——— 1969. Wood anatomy of Lobelioideae (Campanulaceae). Biotropica 1: 47–72.CrossRef
    ——— 1971. Wood anatomy of Macaronesian and other Brassicaceae. Aliso 7: 365–384.
    ——— 1975. Ecological strategies of xylem evolution. University of California Press, Berkeley.
    ——— 1978. Wood anatomy of Bataceae, Gyrostemonaceae, and Stylobasiaceae. Allertonia 5: 297–330.
    ——— 1982. The use of ethylene diamine for softening hard plant structures for paraffin sectioning. Stain Technology 57: 311–317.CrossRef PubMed
    ——— 1984. Vessel grouping in dicotyledon woods: significance and relationship to imperforate tracheary elements. Aliso 10: 505–525.
    ——— 1985a. Observations on functional wood histology of vines and lianas: vessel dimorphism, tracheids, narrow vessels, and parenchyma. Aliso 11: 139–157.
    ——— 1985b. Vegetative anatomy and familial placement of Tovaria. Aliso 11: 69–76.
    ——— 1988. Comparative wood anatomy. Springer Verlag, Berlin.CrossRef
    ——— 1992a. Wood anatomy of Lamiaceae: a sur vey, with comments on vascular and vasicentric tracheids. Aliso 13: 309–338.
    ——— 1992b. Wood anatomy of Solanaceae. A survey. Allertonia 6: 279–326.
    ——— 1996. Wood anatomy of Akaniaceae and Bretschneideraceae. A case of near identity and it systematic implications. Systematic Botany 21: 607–616.CrossRef
    ——— 1998a. Wood and bark anatomy of Caricaceae: correlations with systematics and habit. IAWA Journal 19: 191–206.CrossRef
    ——— 1998b. Wood anatomy of Resedaceae. Aliso 16: 127–135.
    ——— 2001. Comparative wood anatomy, 2nd ed. Springer Verlag, Berlin.
    ——— 2002. Wood and bark anatomy of Salvadoraceae: ecology, relationships, histology of Interxylary phloem. Journal of the Torrey Botanical Society 129: 10–20.CrossRef
    ——— 2005. Wood anatomy of Krameriaceae with comparisons with Zygophyllaceae: phylesis, ecology, and systematics. Botanical Journal of the Linnean Society 149: 257–270.CrossRef
    ——— 2007. Successive cambia revisited: histology. Diversity, and functional significance. Journal of the Torrey Botanical Society 134: 301–332.CrossRef
    ——— 2009a. Xylem heterochrony: an unappreciated key to angiosperm origin and diversification. Botanical Journal of the Linnean Society 161: 26–65.CrossRef
    ——— 2009b. Non-random vessel distribution in wood: patterns, modes, diversity, correlations. Aliso 27: 39–58.CrossRef
    ——— 2010. Caryophyllales: a key group for understanding wood anatomy character states and their evolution. Botanical Journal of the Linnean Society 164: 342–393.CrossRef
    ——— 2012. How wood evolves: a new synthesis. Botany 90: 901–940.CrossRef
    ——— 2013. More woodiness/less woodiness: evolutionary avenues, ontogenetic mechanisms. International Journal of Plant Sciences 174: 964–991.CrossRef
    ——— 2014. Fiber dimorphism: cell type diversification as an evolutionary strategy in angiosperm woods. Botanical journal of the Linnean Society 174: 44–67.CrossRef
    ——— 2015a. Living cells in wood, 1. Absence, scarcity and histology of axial parenchyma. Botanical Journal of the Linnean Society 177: 291–321.CrossRef
    ——— 2015b. Living cells in wood. 2. Raylessness: histology and evolutionary significance. Botanical Journal of the Linnean Society 178: 529–555.CrossRef
    ——— & C. J. Donald. 1996. Wood anatomy of Limnanthaceae and Tropaeolaceae in relation to habit and phylogeny. Sida 17: 333–342.
    ——— & D. A. Hoekman. 1985. Ecological wood anatomy of the woody southern California flora. IAWA Bulletin, new series 6: 319–347.CrossRef
    ——— & R. B. Miller. 1999. Vegetative anatomy and relationships of Setchellanthus caeruleus (Setchellanthaceae). Taxon 48: 289–302.CrossRef
    ———, B. Hansen, H. H. Iltis, M. E. Olson & D. L. Geiger. 2013. Forchhammeria and Stixis (Brassicales): stem and wood anatomical diversity, ecological and phylogenetic significance. Aliso 31: 59–75.CrossRef
    Cozzo, D. 1946. Relacion anatomica entre la estructura del leño de las especies argentinas de Capparis y Atamisquea. Lilloa 12: 29–37.
    Donoghue, M. & J. A. Doyle. 1989. Phylogenetic analysis of angiosperms and the relationships of Hamamelidae. In: P. R. Crane & S. Blackmore (eds). Evolution, systematics, and fossil history of the Hamamelidae, 17–45. Clarendon, Oxford.
    Erdtman, G., P. Leins, R. Melville & C. R. Metcalfe. 1969. On the relationships of Emblingia. Botanical Journal of the Linnean Society 62: 169–186.CrossRef
    Fahn, A., E. Werker & P. Baas. 1986. Wood anatomy and identification of trees and shrubs from Israel and adjacent regions. Israel Academy of Sciences and Humanities, Jerusalem.
    Fisher, J. B. 1980. The vegetative and reproductive structure of papaya (Carica papaya). Lyonia 1: 191–208.
    Gadek, P. A., C. J. Quinn, J. E. Rodman, K. I. G. Karol, E. Conti, R. A. Price & E. S. Fernando. 1992. Affinities of the Austrlian endemic Akaniaceae: new evidence from rbcL sequences. Australian Systematic Botany 5: 717–724.CrossRef
    Gandolfo, M. A., K. C. Nixon & W. L. Crepet. 1998. A new fossil flower from the Turonian of New Jersey, Dressiantha bicarpellata gen. et sp. nov. (Capparaceae). American Journal of Botany 84: 964–974.CrossRef
    Gibson, A. C. 1979. Anatomy of Koeberlinia and Canotia revisited. Madroño 26: 1–12.
    Gregory, M. 1994. Bibliography of systematic wood anatomy of dicotyledons. IAWA Journal, Supplement 1: 1–265.
    Grew, N. 1682. The anatomy of plants. Rawlings, London (reprinted 1965 by Johnson Reprints, New York).
    Hall, J. C., K. J. Sytsma & H. H. Iltis. 2002. Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence daa. American Journal of Botany 89:1826–1842.
    Hall, J. C., H. H. Iltis & K. J. Sytsma. 2004. Molecular phylogenetics of core Brassicales, placement of orphan genera Emblingia, Forchhammeria, Tirania, and character evolution. Systematic Botany 29: 654–669.CrossRef
    Hargrave, K. R., K. J. Kolb, F. W. Ewers, & S. D. Davis. 1994. Conduit diameter and drought induced embolism in Salvia mellifera Greene (Labiatae). New Phytologist 126: 695-705.
    Heimsch, C. 1942. Comparative anatomy of the secondary xylem in the “Gruinales” and “Terebinthales” of Wettstein with reference to taxonomic grouing. Lilloa 8: 83–198.
    IAWA Committee on Nomenclature. 1964. Multilingual glossary of terms used in wood anatomy. Verlagsanstalt Buchdruckerei Konkordia, Winterthur.
    Iltis, H. H., J. C. Hall, T. S. Cochrane & K. J. Sytsma. 2011. Studies in the Cleomaceae. 1. On the separate recognition of Capparaceae, Cleomaceae, and Brassicaceae. Annals of the Missouri Botanical Garden 98: 28–36.CrossRef
    Jansen, S., P. Baas & E. Smets. 2001. Vestured pits: their occurrence and systematic importance in eudicots. Taxon 50: 135–167.CrossRef
    ———, ———, P. Gasson & E. Smets. 2003. Vestured pits: do they promote safer water transport? International Journal of Plant Sciences 164: 405–413.
    ———, ———, ———, F. Lens & E. Smets. 2004. Variation in xylem structure from tropics to tundra: evidence from vestured pits. Proceedings of the National Academy of Sciences 101: 8833–8837.
    ———, & A. Nardini. 2014. From systematic to ecological wood anatomy and finally plant hydraulics: are we making progress in understanding xylem evolution? New Phytologist 203: 12–15.
    Kohonen, M. M. 2006. Engineered wettability in tree capillaries. Langmuir 22: 3148–153.CrossRef PubMed
    ——— & A. Helland. 2009. On the function of wall sculpturing in xylem conduits. Journal of Bionic Engineering 6: 324–329.CrossRef
    Kribs, D. A. 1935. Structural lines of specialization in the wood rays of dicotyledons. Botanical Gazette 96: 547–557.CrossRef
    ——— 1937. Salient lines of structural specialization in the wood parenchyma of dicotyledons. Bulletin of the Torrey Botanical Club 64: 177–186.CrossRef
    Lens, F., N. Devin, E. Smets & M. del Arco. 2013. Insular woodiness in the Canary Islands: a remarkable case of convergent evolution. International Journal of Plant Sciences 174: 992–1013.CrossRef
    Mauseth, J. D. 1993. Water-storing and cavitation-preventing adaptations in wood of cacti. Annals of Botany 72: 81–89.CrossRef
    McCully, M., M. Canny, A. Baker & C. Miller. 2014. Some properties of the walls of metaxylem vessels of maize roots, including tests of the wettability of their luminal wall surfaces. Annals of Botany 116: 1–13.
    McLaughlin, J. 1959. The woods and flora of the Florida Keys. Wood anatomy and phylogeny of Batidaceae. Tropical Woods 110: 1–15.
    Metcalfe, C. R. & L. Chalk. 1950. Anatomy of the dicotyledons. Clarendon, Oxford.
    Olson, M. E. 2001. Stem and root anatomy in Moringa (Moringaceae). Haseltonia 8: 56–96.
    ——— 2002. Combining data from DNA sequences and morphology for a phylogeny of Moringaceae. Systematic Botany 27: 55–73.
    ——— 2007. Wood ontogeny as a model for studying heterochrony, with an example of paedomorphosis in Moringa (Moringaceae). Systematics and Biodiversity 5: 145–158.CrossRef
    ——— 2014. Xylem hydraulic evolution, I. W. Bailey, and Nardini & Jansen (2013): pattern and process. New Phytologist 203: 7–11.CrossRef PubMed
    ——— & S. Carlquist. 2001. Stem and root anatomical correlations with life form diversity, ecology, and systematics in Moringa. Botanical Journal of the Linnean Society 135: 315–348.
    den Outer, R. W. & W. L. H. van Veenendal. 1981. Wood and bark anatomy of Azima tetracantha Lam. (Salvadoraceae) with description of its included phloem. Acta Botanica Neerlandica 30: 199–207.CrossRef
    Pax, F. & K. Hoffmann. 1936. Capparidaceae. Pp 146–233. In: A. Engler & K. Prantl (eds). Die natürlichen Pflansenfamilien 17b. Verlag Wilhelm Engelmann, Leipzig.
    Rodman, J. E., P. S. Soltis, D. E. Soltis, K. J. Sytsma & K. G. Karol. 1998. Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies. American Journal of Botany 80: 443–459.
    Sano, Y., H. Morris, H. Shimada, L. Ronse de Craene & S. Jansen. 2011. Anatomical features associated with water transport in imperforate tracheary elements of vessel-bearing angiosperms. Annals of Botany 107: 953–964.CrossRef PubMed PubMedCentral
    Sauter, J. J. 1966. Untersuchungen zur Physiologie der Pappelholzstrahlen. 1. Jahresperiodischer Verlauf der Stärkespeicherung im Holzstrahlenparenchym. Zeitschrift der Pflanzenphysiologie 55: 246–258.
    Schweingruber, F. H. 2006. Anatomical characteristics and ecological trends in the xylem and phloem of Brassicaceae and Resedaceae. IAWA Journal.
    Slatyer, R. O. 1967. Plant-water relationships. Academic, New York.
    Solereder, H. 1885 Über den systematischen Wert der Holzstruktur. T. Oldenbourg, München.
    Solereder, H. 1908. Systematic anatomy of the dicotyledons (trans. Boodle & Fritsch). Clarendon, Oxford.
    Soltis, D. E., et al. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98: 704–730.CrossRef PubMed
    Stern, W. L., G. K. Brizicky & F. N. Tamolang. 1963. The woods and flora of the Florida Keys: Capparaceae. Contributions from the U. S. National Herbarium 34: 25–43.
    Stevens, P. F. 2015. Angiosperm Phylogeny Website, Version 13 (accessed September, 2015).
    Su, J.-X., W. Wange, L.-B. Zhang & Z.-D. Chen. 2012. Phylogenetic placement of two enigmatic genera, Borthwickia and Stixis, based on molecular and pollen data, and the description of a new family of Brassicales, Borthwickiaceae. Taxon 61: 601–611.
    Taylor, D. W., L. J. Hickey. 1996. Evidence for and implications of an herbaceous origin for angiosperms. In, D. W. Taylor & L. J. Hickey, eds., Flowering plant origin, evolution, and phylogeny, 232–266. Chapman & Hall, New York.
    Wolkinger, F. 1969. Morphologie und systematische Verbreitung lebender Holzfasern bei Sträucher und Bäumen. Phyton (Austria) 14: 55–67.
    Zimmermann, M. H. 1978. Structural requirements for optimal water conduction in tree stems. In: P. B. Tomlinson & M. H. Zimmerman (eds). Tropical trees as living systems, 517–532. Cambridge University Press, London.
    ——— 1983. Xylem structure and the ascent of sap. Springer Verlag, Berlin.CrossRef
    Zwieniecki, M., & N. M. Holbrook. 2009. Confirming Maxwell’s demon: biophysics of xylem embolism repair. Trends in Plant Science 14: 530-534.
  • 作者单位:Sherwin Carlquist (1)

    1. Santa Barbara Botanic Garden, 1212 Mission Canyon Road, Santa Barbara, CA, 93105, USA
  • 刊物主题:Plant Sciences; Plant Systematics/Taxonomy/Biogeography; Plant Anatomy/Development; Plant Physiology; Plant Ecology;
  • 出版者:Springer US
  • ISSN:1874-9372
文摘
Wood anatomical data for the 19 families of Brassicales are presented, based on light microscopy and scanning electron microscopy (SEM), arranged according to recent molecular phylogenetic evidence. Because of large species numbers and diversity in ecology and growth form, Brassicales are an ideal case study group for understanding wood evolution. Features newly reported include vestured pits in Cleomaceae, Koeberliniaceae, Pentadiplandraceae, Salvadoraceae, and Setchellanthaceae. Vesturing of primary xylem helices is shown for Raphanus (first report in angiosperms). Fiber dimorphism is newly reported in some genera of the crown group (Capparaceae + Cleomaceae + Brassicaceae). The fiber-tracheid is probably the ancestral imperforate tracheary element type for Brassicales, and from it, libriform fibers, living fibers (including septate fibers), and tracheids have likely been derived. The Baileyan concept of unidirectional evolution from tracheids to libriform fibers must have many exceptions in angiosperms, and tracheids are not uniform. Tracheids occur in Emblingiaceae, Koeberliniaceae, Pentadiplandraceae, Stixaceae, and Tropaeolaceae. Synapomorphies can be identified, as in the Akaniaceae—Tropaeolaceae clade (rays of two sizes, living fibers, scalariform perforation remnants) and the Moringaceae-Caricaceae clade (ground tissue of wood composed of thin-walled fibers or similar parenchymatous cells). Wood of Brassicales is mostly not paedomorphic, although paedomorphic characters suggesting secondary woodiness occur within the families Brassicaceae (abundance of upright ray cells, raylessness), Caricaceae, Cleomaceae, and Moringaceae. Brassicales are probably ancestrally woody, and wood of Sapindales and Malvales has a number of key character states (plesiomorphies) like those in Brassicales, as would be predicted by current molecular phylogenies. Surveys of large taxonomic groupings, such as Brassicales, tend to yield more examples of homoplasies and apomorphies that can be interpreted in terms of adaptation and functional interlinkage (e.g., ray evolution paralleling imperforate tracheary element evolution). In turn, these features can be interpreted in terms of ecology (e.g., xeric habitats) and growth forms (e.g., tree succulents). The assemblages of wood character information in a reasonably well known order of angiosperms permits hypotheses about wood evolution in angiosperms as a whole. Some of the more important hypotheses presented include: (1), that evolution of wood (and other) characters is always progressive, with gene overlays (silencing, modification, etc.) and simultaneous changes in multiple features, so that ancestral conditions are never truly re-attained. (2). Not all characters are of equal value in water economy of any given plant; some (presence of tracheids) may supersede others, and xeromorphic characters can be arranged relative to each other in tiers, although various taxonomic groups have different rosters of conductive safety features. (3). Heterochrony (protracted juvenilism, accelerated adulthood) is extensively represented in angiosperms, and acts as an overlay that is a source of diversity that angiosperms have drawn on since their inception (probably as minimally woody plants). (4). There may be no “purely taxonomic” characters, because genes of an organism relate primarily to changes, ancient and new, that are of adaptive significance, although we may not be able to detect selective value, past or present. Although many families of Brassicales are small and represent occupancy of specialized or extreme habitats (Batis, Koeberlinia, Moringa), active speciation in Brassicaceae and Capparaceae is related to tolerance of drought and cold with mechanisms such as vestured pits, narrow vessels, and abbreviation in life cycle length.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.