Angiogenesis inhibition, hypoxia, and targeting the bone marrow microenvironment in multiple myeloma: new strategies and targets
详细信息    查看全文
  • 作者:Normann Steiner MD (1)
    Johann Kern PhD (1) (2)
    Gerold Untergasser PhD (1)
    Univ.-Doz. Eberhard Gunsilius (1)

    1. Laboratory for Tumor Biology & Angiogenesis
    ; Department of Internal Medicine V ; Innsbruck Medical University ; Anichstrasse 35 ; 6020 ; Innsbruck ; Austria
    2. Oncotyrol GmbH
    ; Innsbruck ; Austria
  • 关键词:Multiple myeloma ; Angiogenesis ; Hypoxia ; Bone marrow microenvironment ; Therapeutic strategies
  • 刊名:memo - Magazine of European Medical Oncology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:7
  • 期:4
  • 页码:202-205
  • 全文大小:339 KB
  • 参考文献:1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095鈥?8. CrossRef
    2. Strobeck M. Multiple myeloma therapies. Nat Rev Drug Discov. 2007;6(3):181鈥?. CrossRef
    3. Kumar SK, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, Pandey S, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28(5):1122鈥?. CrossRef
    4. Rajkumar SV, Gahrton G, Bergsagel PL. Approach to the treatment of multiple myeloma: a clash of philosophies. Blood. 2011;118(12):3205鈥?1. CrossRef
    5. http://seer.cancer.gov/csr/1975_2011/results_merged/topic_lifetime_risk.pdf.
    6. Fowler JA, Mundy GR, Lwin ST, Edwards CM. Bone marrow stromal cells create a permissive microenvironment for myeloma development: a new stromal role for Wnt Inhibitor Dkk1. Cancer Res. 2012;72(9):2183鈥?. CrossRef
    7. Romano A, Conticello C, Cavalli M, Vetro C, La Fauci A, Parrinello NL, et al. Immunological dysregulation in multiple myeloma microenvironment. Biomed Res Int. 2014;2014:198539.
    8. Ribatti D, Vacca A. The role of microenvironment in tumor angiogenesis. Genes Nutr. 2008;3(1):29鈥?4. CrossRef
    9. de la Puente P, Muz B, Azab F, Azab AK. Cell trafficking of endothelial progenitor cells in tumor progression. Clin Cancer Res. 2013;19(13):3360鈥?. CrossRef
    10. Vacca A, Ribatti D. Bone marrow angiogenesis in multiple myeloma. Leukemia. 2006;20(2):193鈥?. CrossRef
    11. Di Raimondo F, Azzaro MP, Palumbo G, Bagnato S, Giustolisi G, Floridia P, et al. Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood. Haematologica. 2000;85(8):800鈥?.
    12. Du W, Hattori Y, Hashiguchi A, Kondoh K, Hozumi N, Ikeda Y, et al. Tumor angiogenesis in the bone marrow of multiple myeloma patients and its alteration by thalidomide treatment. Pathol Int. 2004;54(5):285鈥?4. CrossRef
    13. Kotla V, Goel S, Nischal S, Heuck C, Vivek K, Das B, et al. Mechanism of action of lenalidomide in hematological malignancies. J Hematol Oncol. 2009;2:36. CrossRef
    14. Kumar S, Witzig TE, Dispenzieri A, Lacy MQ, Wellik LE, Fonseca R, et al. Effect of thalidomide therapy on bone marrow angiogenesis in multiple myeloma. Leukemia. 2004;18(3):624鈥?. CrossRef
    15. Zangari M, Anaissie E, Stopeck A, Morimoto A, Tan N, Lancet J, et al. Phase II Study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor, in patients with refractory multiple myeloma. Clin Cancer Res. 2004;10(1):88鈥?5. CrossRef
    16. Podar K, Catley LP, Tai YT, Shringarpure R, Carvalho P, Hayashi T, et al. GW654652, the pan-inhibitor of VEGF receptors, blocks the growth and migration of multiple myeloma cells in the bone marrow microenvironment. Blood. 2004;103(9):3474鈥?. 3527" target="_blank" title="It opens in new window">CrossRef
    17. Kovacs M, Reece D, Marcellus D, Meyer R, Mathews S, Dong RP, et al. A phase II study of ZD6474 (Zactima), a selective inhibitor of VEGFR and EGFR tyrosine kinase in patients with relapsed multiple myeloma鈥擭CIC CTG IND.145. Invest New Drugs. 2006;24(6):529鈥?5.
    18. Prince HM, H枚nemann D, Spencer A, Rizzieri DA, Stadtmauer EA, Roberts AW, et al. Vascular endothelial growth factor inhibition is not an effective therapeutic strategy for relapsed or refractory multiple myeloma: a phase 2 study of pazopanib (GW786034). Blood. 2009;113:4819鈥?0. CrossRef
    19. Van Meter ME, Kim ES. Bevacizumab: current updates in treatment. Curr Opin Oncol. 2010;22(6):586鈥?1. CrossRef
    20. Somlo G, Lashkari A, Bellamy W, Zimmerman TM, Tuscano JM, O'Donnell MR, et al. Phase II randomized trial of bevacizumab versus bevacizumab and thalidomide for relapsed/refractory multiple myeloma: a California Cancer Consortium trial. Br J Haematol. 2011;154(4):533鈥?. CrossRef
    21. Raschko M, Markovina S, Miyamoto S, Longo W, Williams E, McFarland T, et al. Phase II trial of bevacizumab combined with low dose dexamethasone and lenalidomide (BEV/REV/DEX) for relapsed or refractory myeloma (MM). ASH Annu Meet Abstracts. 2007;110(11):1173.
    22. Azab AK, Hu J, Quang P, Azab F, Pitsillides C, Awwad R, et al. Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood. 2012;119(24):5782鈥?4. CrossRef
    23. Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood. 2007;109(7):2708鈥?7.
    24. Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X, et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood. 2009;113(18):4341鈥?1. CrossRef
    25. Ghobrial IM, Shain K, Hanlon C, Banwait R, Azab AK, Laubach JP, et al. Phase I/II Trial of Plerixafor and Bortezomib As a Chemosensitization Strategy In Relapsed Or Relapsed/Refractory Multiple Myeloma. Annual Meeting of American Society of Hematology 2013. Blood;122(21):1947a.
    26. Ludwig H, Weisel K, Engelhardt M, Greil R, Cafro AM, Petrucci MT et al. Anti-CXCL12/SDF-1 Spiegelmer Nox-A12 Alone and In Combination With Bortezomib and Dexamethasone In Patients With Relapsed Multiple Myeloma: Results From A Phase IIa Study. Annual Meeting of American Society of Hematology 2013. Blood;122(21):1951.
    27. Ria R, Catacchio I, Berardi S, De Luisi A, Caivano A, Piccoli C, et al. HIF-1伪 of bone marrow endothelial cells implies relapse and drug resistance in patients with multiple myeloma and may act as a therapeutic target. Clin Cancer Res. 2014;20(4):847鈥?8. CrossRef
    28. Storti P, Bolzoni M, Donofrio G, Airoldi I, Guasco D, Toscani D, et al. Hypoxia-inducible factor (HIF)-1alpha suppression in myeloma cells blocks tumoral growth in vivo inhibiting angiogenesis and bone destruction. Leukemia. 2013;27(8):1697鈥?06. CrossRef
    29. Azab AK, Quang P, Azab F, Pitsillides C, Thompson B, Chonghaile T, et al. P-selectin glycoprotein ligand regulates the interaction of multiple myeloma cells with the bone marrow microenvironment. Blood. 2012;119(6):1468鈥?8. CrossRef
    30. Kibler C, Schermutzki F, Waller HD, Timpl R, Muller CA, Klein G. Adhesive interactions of human multiple myeloma cell lines with different extracellular matrix molecules. Cell Adhes Commun. 1998;5(4):307鈥?3. CrossRef
    31. Liebisch P, Eppinger S, Schopflin C, Stehle G, Munzert G, Dohner H, et al. CD44v6, a target for novel antibody treatment approaches, is frequently expressed in multiple myeloma and associated with deletion of chromosome arm 13q. Haematologica. 2005;90(4):489鈥?3.
    32. Roccaro AM, Hideshima T, Raje N, Kumar S, Ishitsuka K, Yasui H, et al. Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res. 2006;66(1):184鈥?1. CrossRef
    33. Kern J, Untergasser G, Zenzmaier C, Sarg B, Gastl G, Gunsilius E, et al. GRP-78 secreted by tumor cells blocks the antiangiogenic activity of bortezomib. Blood. 2009;114(18):3960鈥?. CrossRef
    34. Caers J, Menu E, De Raeve H, Lepage D, Van Valckenborgh E, Van Camp B, et al. Antitumour and antiangiogenic effects of Aplidin in the 5TMM syngeneic models of multiple myeloma. Br J Cancer. 2008;98(12):1966鈥?4. CrossRef
    35. Mitsiades CS, Ocio EM, Pandiella A, Maiso P, Gajate C, Garayoa M, et al. Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo. Cancer Res. 2008;68(13):5216鈥?5. CrossRef
    36. Broggini M, Marchini SV, Galliera E, Borsotti P, Taraboletti G, Erba E, et al. Aplidine, a new anticancer agent of marine origin, inhibits vascular endothelial growth factor (VEGF) secretion and blocks VEGF-VEGFR-1 (flt-1) autocrine loop in human leukemia cells MOLT-4. Leukemia. 2003;17(1):52鈥?. CrossRef
    37. Deryugina EI, Quigley JP. Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Histochem Cell Biol. 2008;130(6):1119鈥?0. CrossRef
  • 刊物主题:Oncology; Medicine/Public Health, general;
  • 出版者:Springer Vienna
  • ISSN:1865-5076
文摘
Multiple myeloma (MM) is a hematological B-cell malignancy that has still a fatal prognosis. Although the treatments have improved, one major problem in MM is the clinical resistance to available drugs and combination therapies over time. Novel agents, such as oral proteasome inhibitors, monoclonal antibodies, second generation immunomodulatory drugs and therapies targeting the cell signaling and the tumor microenvironment are in development for the treatment of relapsed/refractory MM. In this review, we refer on the role of new strategies targeting the tumor microenvironment, especially on angiogenesis, hypoxia and other interactions between MM and bone marrow components.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.