Light exaggerates apical hook curvature through phytochrome actions in tomato seedlings
详细信息    查看全文
  • 作者:Chizuko Shichijo (1)
    Hisako Ohuchi (2)
    Naoko Iwata (2)
    Yukari Nagatoshi (3)
    Miki Takahashi (1)
    Eri Nakatani (1)
    Kentaroh Inoue (2)
    Seiji Tsurumi (4)
    Osamu Tanaka (2)
    Tohru Hashimoto (5)
  • 关键词:Apical hypocotyl hook ; High ; pigment ; 1 ; Hook curvature ; Mutant ; Phytochrome ; Solanum lycopersicum L.
  • 刊名:Planta
  • 出版年:2010
  • 出版时间:February 2010
  • 年:2010
  • 卷:231
  • 期:3
  • 页码:665-675
  • 全文大小:530KB
  • 参考文献:1. Bernhardt A, Lechner E, Hano P, Schade V, Dieterle M, Anders M, Dubin MJ, Benvenuto G, Bowler C, Genschik P, Hellmann H (2006) CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in / Arabidopsis thaliana. Plant J 47:591-03 CrossRef
    2. Botto JF, Sánchez RA, Whitelam GC, Casal JJ (1996) Phytochrome A mediates the promotion of seed germination by very low fluences of light and canopy shade light in Arabidopsis. Plant Physiol 110:439-44
    3. Casal JJ, Sánchez RA, Vierstra RD (1994) / Avena phytochrome A overexpressed in transgenic tobacco seedlings differentially affects red/far-red reversible and very-low-fluence responses (cotyledon unfolding) during de-etiolation. Planta 192:306-09 CrossRef
    4. Casal JJ, Sánchez RA, Botto JF (1998) Modes of action of phytochromes. J Exp Bot 49:127-38 CrossRef
    5. Chen H, Shen Y, Tang X, Yu L, Wang J, Guo L, Zhang Y, Zhang H, Feng S, Strickland E, Zheng N, Deng XW (2006) / Arabidopsis CULLIN4 forms an E3 ubiquitin ligase with RBX1 and the CDD complex in mediating light control of development. Plant Cell 18:1991-004 CrossRef
    6. Clough RC, Casal JJ, Jordan ET, Christou P, Vierstra RD (1995) Expression of functional oat phytochrome A in transgenic rice. Plant Physiol 109:1039-045 CrossRef
    7. Cone JW, Jaspers PAPM, Kendrick RE (1985) Biphasic fluence–response curves for light induced germination of / Arabidopsis thaliana seeds. Plant Cell Environ 8:605-12 CrossRef
    8. Franklin KA, Allen T, Whitelam GC (2007) Phytochrome A is an irradiance-dependent red light sensor. Plant J 50:108-17 CrossRef
    9. Goeschl JD, Pratt HK, Bonner BA (1967) An effect of light on the production of ethylene and the growth of the plumular portion of etiolated pea seedlings. Plant Physiol 42:1077-080 CrossRef
    10. Johnson E, Bradley M, Harberd NP, Whitelam GC (1994) Photoresponses of light-grown / phyA mutants of / Arabidopsis. Plant Physiol 105:141-49 CrossRef
    11. Kang BG, Ray PM (1969) Ethylene and carbon dioxide as mediators in the response of the bean hypocotyl hook to light and auxins. Planta 87:206-16 CrossRef
    12. Kerckhoffs LHJ, van Tuinen A, Hauser BA, Cordonnier-Pratt M-M, Nagatani A, Koornneef M, Pratt LH, Kendrick RE (1996) Molecular analysis of / tri-mutant alleles in tomato indicates the / Tri locus is the gene encoding the apoprotein of phytochrome B1. Planta 199:152-57 CrossRef
    13. Kerckhoffs LHJ, de Groot NAMA, van Tuinen A, Schreuder MEL, Nagatani A, Koornneef M, Kendrick RE (1997a) Physiological characterization of exaggerated-photoresponse mutants of tomato. J Plant Physiol 150:578-87
    14. Kerckhoffs LHJ, Schreuder MEL, van Tuinen A, Koornneef M, Kendrick RE (1997b) Phytochrome control of anthocyanin biosynthesis in tomato seedlings: analysis using photomorphogenic mutants. Photochem Photobiol 65:374-81 CrossRef
    15. Lazarova GI, Kerckhoffs LHJ, Brandst?dter J, Matsui M, Kendrick RE, Cordonnier-Pratt M-M, Pratt LH (1998) Molecular analysis of / PHYA in wild-type and phytochrome A-deficient mutants of tomato. Plant J 14:653-62 CrossRef
    16. Lieberman M, Segev O, Gilboa N, Lalazar A, Levin I (2004) The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the / high pigment-1 mutant phenotype. Theor Appl Genet 108:1574-581 CrossRef
    17. Liscum E, Hangarter RP (1993a) Light-stimulated apical hook opening in wild-type / Arabidopsis thaliana seedlings. Plant Physiol 101:567-72
    18. Liscum E, Hangarter RP (1993b) Photomorphogenic mutants of / Arabidopsis thaliana reveal activities of multiple photosensory systems during light-stimulated apical-hook opening. Planta 191:214-21 CrossRef
    19. Liu Y, Roof S, Ye Z, Barry C, van Tuinen A, Vrebalov J, Bowler C, Giovannoni J (2004) Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci USA 101:9897-902 CrossRef
    20. Mancinelli AL (1994) The physiology of phytochrome action. In: Kendrick RE, Kronengerg GHM (eds) Photomorphogenesis in plants, 2nd edn. Kluwer, Dordrecht, pp 211-69 CrossRef
    21. Mandoli DF, Briggs WR (1981) Phytochrome control of two low-irradiance responses in etiolated oat seedlings. Plant Physiol 67:733-39 CrossRef
    22. Mazzella MA, Alconada Magliano TM, Casal JJ (1997) Dual effect of phytochrome A on hypocotyl growth under continuous red light. Plant Cell Environ 20:261-67 CrossRef
    23. Mohr H, Noblé A (1960) Die Steuerung der Schliessung und ?ffnung des Plumula-Hakens bei Keimlingen von / Lactuca sativa durch sichtbare Strahlung. Planta 55:327-42 CrossRef
    24. Peters JL, van Tuinen A, Adamse P, Kendrick RE, Koornneef M (1989) High pigment mutants of tomato exhibit high sensitivity for phytochrome action. J Plant Physiol 134:661-66
    25. Peters JL, Schreuder MEL, Verduin SJW, Kendrick RE (1992) Physiological characterization of a high-pigment mutant of tomato. Photochem Photobiol 56:75-2 CrossRef
    26. Peters JL, Széll M, Kendrick RE (1998) The expression of light-regulated genes in the high-pigment-1 mutant of tomato. Plant Physiol 117:797-07 CrossRef
    27. Shichijo C, Hashimoto T (1997) A red light signal distinct from the far-red-absorbing form of phytochrome in anthocyanin induction of / Sorghum bicolor. J Photochem Photobiol B: Biol 38:70-5 CrossRef
    28. Shichijo C, Hamada T, Hiraoka M, Johnson CB, Hashimoto T (1993) Enhancement of red-light-induced anthocyanin synthesis in sorghum first internodes by moderate low temperature given in the pre-irradiation culture period. Planta 191:238-45 CrossRef
    29. Shichijo C, Onda S, Kawano R, Nishimura Y, Hashimoto T (1999) Phytochrome elicits the cryptic red-light signal which results in amplification of anthocyanin biosynthesis in sorghum. Planta 208:80-7 CrossRef
    30. Shichijo C, Katada K, Tanaka O, Hashimoto T (2001) Phytochrome A-mediated inhibition of seed germination in tomato. Planta 213:764-69 CrossRef
    31. Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M (1996) Action spectra for phytochrome A- and B-specific photoinduction of seed germination in / Arabidopsis thaliana. Proc Natl Acad Sci USA 93:8129-133 CrossRef
    32. Staneloni RJ, Rodriguez-Batiller MJ, Legisa D, Scarpin MR, Agalou A, Cerdán PD, Meijer AH, Ouwerkerk PBF, Casal JJ (2009) Bell-like homeodomain selectively regulates the high-irradiance response of phytochrome A. Proc Natl Acad Sci USA 106:13624-3629 CrossRef
    33. van Tuinen A, Kerckhoffs LHJ, Nagatani A, Kendrick RE, Koornneef M (1995a) Far-red light-insensitive, phytochrome A-deficient mutants of tomato. Mol Gen Genet 246:133-41 CrossRef
    34. van Tuinen A, Kerckhoffs LHJ, Nagatani A, Kendrick RE, Koornneef M (1995b) A temporarily red light-insensitive mutant of tomato lacks a light-stable, B-like phytochrome. Plant Physiol 108:939-47
    35. Wang S, Liu J, Feng Y, Niu X, Giovannoni J, Liu Y (2008) Altered plastid levels and potential for improved fruit nutrient content by downregulation of the tomato DDB1-interacting protein CUL4. Plant J 55:89-03 CrossRef
    36. Weller JL, Schreuder MEL, Smith H, Koornneef M, Kendrick RE (2000) Physiological interactions of phytochromes A, B1 and B2 in the control of development in tomato. Plant J 24:345-56 CrossRef
    37. Weller JL, Perrotta G, Schreuder MEL, van Tuinen A, Koornneef M, Giuliano G, Kendrick RE (2001) Genetic dissection of blue-light sensing in tomato using mutants deficient in cryptochrome 1 and phytochromes A, B1 and B2. Plant J 25:427-40 CrossRef
    38. Withrow RB, Klein WH, Elstad V (1957) Action spectra of photomorphogenic induction and its photoinactivation. Plant Physiol 32:453-62 CrossRef
  • 作者单位:Chizuko Shichijo (1)
    Hisako Ohuchi (2)
    Naoko Iwata (2)
    Yukari Nagatoshi (3)
    Miki Takahashi (1)
    Eri Nakatani (1)
    Kentaroh Inoue (2)
    Seiji Tsurumi (4)
    Osamu Tanaka (2)
    Tohru Hashimoto (5)

    1. Department of Biology, Graduate School of Science, Kobe University, Rokkodai, Nada-ku, Kobe, 657-8501, Japan
    2. Faculty of Science and Engineering, Konan University, Okamoto, Higashinada-ku, Kobe, 658-8501, Japan
    3. Faculty of Human Development, Kobe University, Tsurukabuto, Nada-ku, Kobe, 657-8501, Japan
    4. Center for Supports to Research and Education Activities, Kobe University, Rokkodai, Nada-ku, Kobe, 657-8501, Japan
    5. Uozaki Life Science Laboratory, 9-45-101 Uozakiminami-5-chome, Higashinada-ku, Kobe, 658-0025, Japan
文摘
Contrary to the established notion that the apical hook of dark-grown dicotyledonous seedlings opens in response to light, we found in tomato (Solanum lycopersicum L.) that the apical hook curvature is exaggerated by light. Experiments with several tomato cultivars and phytochrome mutants, irradiated with red and far-red light either as a brief pulse (Rp, FRp) or continuously (Rc, FRc), revealed: the hook-exaggeration response is maximal at the emergence of the hypocotyl from the seed; the effect of Rp is FRp-reversible; fluence–response curves to a single Rp or FRp show an involvement of low and very low fluence responses (LFR, VLFR); the effect of Rc is fluence-rate dependent, but that of FRc is not; the phyA mutant (phyA hp-1) failed to respond to an Rp of less than 10??μmol?m? and to an FRp of all fluences tested as well as to FRc, thus indicating that the hook-exaggeration response involves phyA-mediated VLFR. The Rp fluence–response curve with the same mutant also confirmed the presence of an LFR mediated by phytochrome(s) other than phyA, although the phyB1 mutant (phyB1 hp-1) still showed full response probably due to other redundant phytochrome species (e.g., phyB2). Simulation experiments led to the possible significance of hook exaggeration in the field that the photoresponse may facilitate the release of seed coat when seeds germinate at some range of depth in soil. It was also observed that seed coat and/or endosperm are essential to the hook exaggeration.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.