Improved phosphate metabolism and biomass production by overexpression of AtPAP18 in tobacco
详细信息    查看全文
  • 作者:Katayoun Zamani (1)
    Mohammad Sadegh Sabet (1)
    Tahmineh Lohrasebi (1)
    Amir Mousavi (1)
    Mohammad Ali Malboobi (1)
  • 关键词:Arabidopsis thaliana ; purple acid phosphatase ; AtPAP18 ; Nicotiana tabbacum ; Pi acquisition
  • 刊名:Biologia
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:67
  • 期:4
  • 页码:713-720
  • 全文大小:346KB
  • 参考文献:1. Ames B.N. 1966. Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol. 8: 115鈥?18. CrossRef
    2. Bradford M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248鈥?54. CrossRef
    3. Chevalier F., Pata M., Nacry P., Doumas P. & Rossignol M. 2003. Effects of phosphate availability on the root system architecture: large scale analysis of the natural variation between Arabidopsis accessions. Plant Cell Environ. 26: 1839鈥?850. CrossRef
    4. Cox R.S., Schenk G., Mitic N., Gahan L.R. & Hengge A.C. 2007. Diesterase activity and substrate binding in purple acid phosphatases. J. Am. Chem. Soc. 129: 9550鈥?551. CrossRef
    5. del Pozo J.C., Allona I., Rubio V., Leyva A., de la Pena A., Aragoncillo C. & Paz-Ares J. 1999. A type 5 acid phosphatase gene from / Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilizing/oxidative stress conditions. Plant J. 19: 579鈥?89. CrossRef
    6. Emanuelsson O., Nielsen H., Brunak S. & Heijne G.V. 2000. Predicting subcellular localization of proteins based on their Nterminal amino acid sequence. J. Mol. Biol. 300: 1005鈥?016. CrossRef
    7. Guo L., Zhao Y., Zhang S., Zhang H. & Xiao K. 2009. Improvement of organic phosphate acquisition in transgenic tobacco plants by overexpression of a soybean phytase gene Sphy1. Front. Agric. China 3: 259鈥?65. CrossRef
    8. Haran S., Logendra S., Seskar M., Bratanova M. & Raskin I. 2000. Characterization of / Arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression. Plant Physiol. 124: 615鈥?26. CrossRef
    9. Hirschi K.D. 1999. Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11: 2113鈥?122.
    10. Holsters M., de Waele D., Depicker A., Messens E., van Montagu M. & Schell J. 1978. Transfection and transformation of / Agrobacterium tumefaciens. Mol. Gen. Genet. 163: 181鈥?87. CrossRef
    11. Kavanova M., Grimoldi A.A., Lattanzi F.A. & Schnyder H. 2006. Phosphorus nutrition and mycorrhiza effects on grass leaf growth. P status and size mediated effects on growth zone kinematics. Plant Cell Environ. 29: 511鈥?20. CrossRef
    12. Kuang R., Chan K.H., Yeung E. & Lim B.L. 2009. Molecular and biochemical characterization of AtPAP15, a purple acid phosphatase with phytase activity, in / Arabidopsis. Plant Physiol. 151: 199鈥?09. CrossRef
    13. Lambers H., Shane M.W., Cramer M.D., Pearse S.J. & Veneklaas E.J. 2006. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann. Bot. 98: 693鈥?13. CrossRef
    14. Li C., Gui S., Yang T., Walk T., Wang X. & Liao H. 2012. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis. Ann. Bot. 109: 275鈥?85. CrossRef
    15. Li D., Zhu H., Liu K., Liu X., Leggewie G., Udvardi M. & Wang D. 2002. Purple acid phosphatases of / Arabidopsis thaliana comparative analysis and differential regulation by phosphate deprivation. J. Biol. Chem. 277: 27772鈥?7781. CrossRef
    16. Liu J.F., Zhao C.Y., Ma j, Zhang J.Y., Li M.G., Yan J.Y., Wang X.F. & Ma Z.Y. 2011. Agrobacterium-mediated transformation of cotton ( / Gossypium hirsutum L.) with a fungal phytase gene improves phosphorus acquisition. Euphytica 181: 31鈥?0. CrossRef
    17. Liu J., Samac D.A., Bucciarelli B., Allan D.L. & Vance C.P. 2005. Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport. Plant J. 41: 257鈥?68. CrossRef
    18. Lohrasebi T., Malboobi M.A., Samaeian A. & Sanei V. 2007. Differential expression of / Arabidopsis thaliana acid phosphatases in response to abiotic stresses. Iranian J. Biotechnol. 5: 130鈥?39.
    19. Ma X.F., Wright E., Ge Y., Bell J., Bouton J.H. & Wang Z.Y. 2009. Improving phosphorus acquisition of white clover ( / Trifolium repens L.) by transgenic expression of plant-derived phytase and acid phosphatase genes. Plant Sci. 176: 479鈥?88. CrossRef
    20. Malboobi M.A. & Lefebvre D. 1997. A phosphate-starvation inducible / 尾-glucosidase gene (psr3.2) isolated from / Arabidopsis thaliana is a member of a distinct subfamily of the BGA family. Plant Mol. Biol. 34: 57鈥?8. CrossRef
    21. Morcuende R., Gibon Y., Zheng W., Pant B.D., Blasing O., Usadel B., Czechowskit T., Udvardi M.K., Stitt M. & Scheible W.R. 2007. Genome-wide reprogramming of metabolism and regulatory networks of / Arabidopsis in response to phosphorus. Plant Cell Environ. 30: 85鈥?12. CrossRef
    22. Mousavi A., Hiratsuka R., Takase H., Hiratsuka K. & Hotta Y. 1998. A novel glycine-rich protein is associated with starch grain accumulation during anther development. Plant Cell Physiol. 40: 406鈥?16. CrossRef
    23. Muller R., Morant M., Jarmer H., Nilsson L. & Nielsen T.H. 2007. Genome-wide analysis of the / Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiol. 143: 156鈥?71. CrossRef
    24. Murashige T. & Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473鈥?97. CrossRef
    25. Nakai K. & Horton P. 1999. PSORT: a program for detecting sorting signals in proteins and determining their subcellular localization. Trends Biochem. Sci. 24: 34鈥?6. CrossRef
    26. Plaxton W.C. & Tran H.T. 2011. Metabolic adaptations of phosphate-starved plants. Plant Physiol. 156: 1006鈥?015. CrossRef
    27. Richardson A.E., Barea J.M., McNeill A.M. & Prigent-Combaret C. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganism. Plant Soil 321: 305鈥?39. CrossRef
    28. Richardson A.E., Hadobas P.A. & Hayes J.E. 2001. Extracellular secretion of / Aspergillus phytase from / Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J. 25: 641鈥?49. CrossRef
    29. Rodriguez H. & Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319鈥?39. CrossRef
    30. Sabet M.S., Zamani K., Lohrasebi T., Malboobi M.A. & Valizade M. 2012. Functional assessment of overexpressed / Arabidopsis PAP26-encoding gene in tobacco plants. Iranian J. Biotechnol. (in press).
    31. Shen J., Yuan L., Zhang J., Li H., Bai Z., Chen X., Zhang W. & Zhang F. 2011. Phosphorus dynamics: from soil to plant. Plant Physiol. 156: 997鈥?005. CrossRef
    32. Schenk G., Ge Y., Carrington L.E., Wynne C.J., Searl I.R., Carroll B.J., Hamilton S. & de Jersey J. 1999. Dinuclear metal centers in plant purple acid phosphatase: Fe-Mn in sweet potato and Fe-Zn in soybean. Arch. Biochem. Biophys. 370: 183鈥?89. CrossRef
    33. Tran H.T., Hurley B.A. & Plaxton W.C. 2010. Feeding hungry plants: the role of purple acid phosphatases in phosphate nutrition. Plant Sci. 179: 14鈥?7. CrossRef
    34. Tran H.T. & Plaxton W.C. 2008. Proteomic analysis of alterations in the secretome of / Arabidopsis thaliana suspension cells subjected to nutritional phosphate deficiency. Proteomics 8: 4317鈥?326. CrossRef
    35. Veljanovski V., Vanderbeld B., Knowles V.L., Snedden W.A. & Plaxton W.C. 2006. Biochemical and molecular characterization of AtPAP26, a vacuolar purple acid phosphatase upregulated in phosphate-deprived / Arabidopsis suspension cells and seedlings. Plant Physiol. 142: 1282鈥?293. CrossRef
    36. Wang L., Li Z., Qian W., Guo W., Gao X., Huang L., Wang H., Zhu H., Wu J., Wang D. & Liu D. 2011. / Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation. Plant Physiol. 157: 1283鈥?299. CrossRef
    37. Wang X., Wang Y., Tian J., Lim B.L., Yan X. & Liao H. 2009. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol. 151: 233鈥?40. CrossRef
    38. Xiao K., Katagi H., Harrison M. & Wang Z.Y. 2006. Improved phosphorus acquisition and biomass production in / Arabidopsis by transgenic expression of a purple acid phosphatase gene from M. truncatula. Plant Sci. 170: 191鈥?02. CrossRef
    39. Zamani K., Malboobi M.A., Lohrasebi T. & Esfahani K. 2010. Plant expression vectors for production and purification of recombinant proteins. I.R. Iran Patent No. 3058.
    40. Zhang Q., Wang C., Tian J., Li K. & Shou H. 2011. Identification of rice purple acid phosphatases related to phosphate starvation signaling. Plant Biol. 13: 7鈥?5. CrossRef
    41. Zhang W., Gruszewski H.A., Chevone B.I. & Nessler C.L. 2008. An / Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol. 146: 431鈥?40. CrossRef
  • 作者单位:Katayoun Zamani (1)
    Mohammad Sadegh Sabet (1)
    Tahmineh Lohrasebi (1)
    Amir Mousavi (1)
    Mohammad Ali Malboobi (1)

    1. Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran, Islamic Republic of Iran
文摘
Limited availability of phosphate ion (Pi) reduces plant growth in natural ecosystems. Here, we report the functional effects of overexpressing an Arabidopsis thaliana purple acid phosphatase encoding gene, AtPAP18, in Nicotiana tabbacum as a crop model plant. Transgenic tobacco plants exhibited significant increases in acid phosphatase activity, total P and Pi contents leading to improved biomass production in both Pi-deficient and Pi-sufficient conditions. Transient expression of AtPAP18::green fluorescent fusion protein in onion epidermal cells indicated that AtPAP18 is a dual-targeted protein, which is detected mainly in the apoplast of the cells after 24 h and in the vacuole after 72 h. Possibly, AtPAP18 protein confers efficient retrieval of Pi from bonded extracellular compounds as well as expendable intracellular Pi-monoesters and anhydrides. These data clearly indicate that overexpression of AtPAP18 gene offers an effective approach for reducing the consumption of chemical Pi fertilizer through increased acquisition of soil Pi and mobilization of internal resources.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.