Trophic regulation of autoaggregation in Pseudomonas taiwanensis VLB120
详细信息    查看全文
  • 作者:Karolin Schmutzler ; Octavia Natascha Kracht…
  • 关键词:Autoaggregation ; Cyclic diguanylate ; Lipopolysaccharide ; Hydrophobicity ; Carbon source ; BifA
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:100
  • 期:1
  • 页码:347-360
  • 全文大小:6,920 KB
  • 参考文献:Abdel-Nour M, Duncan C, Prashar A, Rao C, Ginevra C, Jarraud S, Low DE, Ensminger AW, Terebiznik MR, Guyard C (2014) The Legionella pneumophila collagen-like protein mediates sedimentation, autoaggregation, and pathogen-phagocyte interactions. Appl Environ Microbiol 80:1441–1454PubMed PubMedCentral CrossRef
    Alhede M, Kragh KN, Qvortrup K, Allesen-Holm M, van Gennip M, Christensen LD, Jensen PO, Nielsen AK, Parsek M, Wozniak D, Molin S, Tolker-Nielsen T, Hoiby N, Givskov M, Bjarnsholt T (2011) Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PLoS One 6:e27943PubMed PubMedCentral CrossRef
    Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262–3268PubMed PubMedCentral CrossRef
    Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300PubMed PubMedCentral
    Beveridge TJ, Makin SA, Kadurugamuwa JL, Li Z (1997) Interactions between biofilms and the environment. FEMS Microbiol Rev 20:291–303PubMed CrossRef
    Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR (2010) Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75:827–842PubMed PubMedCentral CrossRef
    Bossier P, Verstraete W (1996) Triggers for microbial aggregation in activated sludge? Appl Microbiol Biotechnol 45:1–6CrossRef
    Buehler B, Bollhalder I, Hauer B, Witholt B, Schmid A (2003) Use of the two-liquid phase concept to exploit kinetically controlled multistep biocatalysis. Biotechnol Bioeng 81:683–694CrossRef
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622PubMed CrossRef
    Byrd MS, Sadovskaya I, Vinogradov E, Lu H, Sprinkle AB, Richardson SH, Ma L, Ralston B, Parsek MR, Anderson EM, Lam JS, Wozniak DJ (2009) Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol 73:622–638PubMed PubMedCentral CrossRef
    Choi KH, Schweizer HP (2006) Mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 1:153–161PubMed CrossRef
    Dasgupta T, de Kievit TR, Masoud H, Altman E, Richards JC, Sadovskaya I, Speert DP, Lam JS (1994) Characterization of lipopolysaccharide-deficient mutants of Pseudomonas aeruginosa derived from serotypes O3, O5, and O6. Infect Immun 62:809–817PubMed PubMedCentral
    Deinema MH, Zevenhuizen LP (1971) Formation of cellulose fibrils by Gram-negative bacteria and their role in bacterial flocculation. Arch Mikrobiol 78:42–51PubMed CrossRef
    Dillon JK, Fuerst JA, Hayward AC, Davis GHG (1986) A comparison of five methods for assaying bacterial hydrophobicity. J Microbiol Methods 6:13–19CrossRef
    Dorobantu LS, Yeung AK, Foght JM, Gray MR (2004) Stabilization of oil-water emulsions by hydrophobic bacteria. Appl Environ Microbiol 70:6333–6336PubMed PubMedCentral CrossRef
    Farrell A, Quilty B (2002) Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol. J Ind Microbiol Biotechnol 28:316–324PubMed CrossRef
    Ferguson GC, Bertels F, Rainey PB (2013) Adaptive divergence in experimental populations of Pseudomonas fluorescens. V. Insight into the niche specialist “fuzzy spreader” compels revision of the model Pseudomonas radiation. Genetics 195:1319–1335PubMed PubMedCentral CrossRef
    Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189:7945–7947PubMed PubMedCentral CrossRef
    Frick IM, Morgelin M, Bjorck L (2000) Virulent aggregates of Streptococcus pyogenes are generated by homophilic protein-protein interactions. Mol Microbiol 37:1232–1247PubMed CrossRef
    Geertsema-Doornbusch GI, van der Mei HC, Busscher HJ (1993) Microbial cell surface hydrophobicity: the involvement of electrostatic interactions in microbial adhesion to hydrocarbons (MATH). J Microbiol Methods 18:61–68CrossRef
    Ghafoor A, Hay ID, Rehm BHA (2011) Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol 77:5238–5246PubMed PubMedCentral CrossRef
    Gross R, Hauer B, Otto K, Schmid A (2007) Microbial biofilms: new catalysts for maximizing productivity of long-term biotransformations. Biotechnol Bioeng 98:1123–1134PubMed CrossRef
    Gross R, Lang K, Buehler K, Schmid A (2010) Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis. Biotechnol Bioeng 105:705–717PubMed
    Haaber J, Cohn MT, Frees D, Andersen TJ, Ingmer H (2012) Planktonic aggregates of Staphylococcus aureus protect against common antibiotics. PLoS One 7:e41075PubMed PubMedCentral CrossRef
    Halan B, Schmid A, Buehler K (2010) Maximizing the productivity of catalytic biofilms on solid supports in membrane reactors. Biotechnol Bioeng 106:516–527PubMed CrossRef
    Halan B, Schmid A, Buehler K (2011) Real-time solvent tolerance analysis of Pseudomonas sp. strain VLB120ΔC catalytic biofilms. Appl Environ Microbiol 77:1563–1571PubMed PubMedCentral CrossRef
    Halan B, Letzel T, Schmid A, Buehler K (2014) Solid support membrane aerated catalytic biofilm reactor for the continuous synthesis of (S)-styrene oxide at gram scale. Biotechnol J 9:1339–1349PubMed CrossRef
    Hamada T, Sameshima Y, Honda K, Omasa T, Kato J, Ohtake H (2008) A comparison of various methods to predict bacterial predilection for organic solvents used as reaction media. J Biosci Bioeng 106:357–362PubMed CrossRef
    Hamada T, Maeda Y, Matsuda H, Sameshima Y, Honda K, Omasa T, Cato J, Ohtake H (2009) Effect of cell-surface hydrophobicity on bacterial conversion of water-immiscible chemicals in two-liquid-phase culture systems. J Biosci Bioeng 108:5CrossRef
    Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580PubMed CrossRef
    Harlow LS, Kadziola A, Jensen KF, Larsen S (2004) Crystal structure of the phosphorolytic exoribonuclease RNase PH from Bacillus subtilis and implications for its quaternary structure and tRNA binding. Protein Sci 13:668–677PubMed PubMedCentral CrossRef
    Herbst FA, Sondergaard MT, Kjeldal H, Stensballe A, Nielsen PH, Dueholm MS (2015) Major proteomic changes associated with amyloid-induced biofilm formation in Pseudomonas aeruginosa PAO1. J Proteome Res 14:72–81PubMed CrossRef
    Hickman JW, Tifrea DF, Harwood CS (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102:14422–14427PubMed PubMedCentral CrossRef
    Hitchcock PJ, Brown TM (1983) Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol 154:269–277PubMed PubMedCentral
    Hori K, Hiramatsu N, Nannbu M, Kanie K, Okochi M, Honda H, Watanabe H (2009) Drastic change in cell surface hydrophobicity of a new bacterial strain, Pseudomonas sp. TIS1-127, induced by growth temperature and its effects on the toluene-conversion rate. J Biosci Bioeng 107:250–255PubMed CrossRef
    Irie Y, Borlee BR, O’Connor JR, Hill PJ, Harwood CS, Wozniak DJ, Parsek MR (2012) Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 109:20632–20636PubMed PubMedCentral CrossRef
    Jiménez-Fernández A, López-Sánchez A, Calero P, Govantes F (2015) The c-di-GMP phosphodiesterase BifA regulates biofilm development in Pseudomonas putida. Environ Microbiol Rep 7:78–84PubMed CrossRef
    Karande R, Halan B, Schmid A, Buehler K (2014) Segmented flow is controlling growth of catalytic biofilms in continuous multiphase microreactors. Biotechnol Bioeng 111:1831–1840PubMed CrossRef
    Klebensberger J, Rui O, Fritz E, Schink B, Philipp B (2006) Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate. Arch Microbiol 185:417–427PubMed CrossRef
    Klebensberger J, Lautenschlager K, Bressler D, Wingender J, Philipp B (2007) Detergent-induced cell aggregation in subpopulations of Pseudomonas aeruginosa as a preadaptive survival strategy. Environ Microbiol 9:2247–2259PubMed CrossRef
    Koehler KA, Blank LM, Frick O, Schmid A (2014) D-Xylose assimilation via the Weimberg pathway by solvent-tolerant Pseudomonas taiwanensis VLB120. Environ Microbiol 17:156–170CrossRef
    Krasowska A, Sigler K (2014) How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol 4:112PubMed PubMedCentral CrossRef
    Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM, O’Toole GA (2007) BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189:8165–8178PubMed PubMedCentral CrossRef
    Kuchma SL, Ballok AE, Merritt JH, Hammond JH, Lu W, Rabinowitz JD, O’Toole GA (2010) Cyclic-di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa: the pilY1 gene and its impact on surface-associated behaviors. J Bacteriol 192:2950–2964PubMed PubMedCentral CrossRef
    Lam JS, Taylor VL, Islam ST, Hao Y, Kocíncová D (2011) Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front Microbiol 2:118PubMed PubMedCentral CrossRef
    Lau PC, Lindhout T, Beveridge TJ, Dutcher JR, Lam JS (2009) Differential lipopolysaccharide core capping leads to quantitative and correlated modifications of mechanical and structural properties in Pseudomonas aeruginosa biofilms. J Bacteriol 191:6618–6631PubMed PubMedCentral CrossRef
    Li Y, Heine S, Entian M, Sauer K, Frankenberg-Dinkel N (2013) NO-induced biofilm dispersion in Pseudomonas aeruginosa is mediated by an MHYT domain-coupled phosphodiesterase. J Bacteriol 195:3531–3542PubMed PubMedCentral CrossRef
    Ma L, Wang J, Wang S, Anderson EM, Lam JS, Parsek MR, Wozniak DJ (2012) Synthesis of multiple Pseudomonas aeruginosa biofilm matrix exopolysaccharides is post-transcriptionally regulated. Environ Microbiol 14:1995–2005PubMed PubMedCentral CrossRef
    Martinez-Garcia E, de Lorenzo V (2011) Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol 13:2702–2716PubMed CrossRef
    Martinez-Garcia E, Calles B, Arevalo-Rodriguez M, de Lorenzo V (2011) pBAM1: an all-synthetic genetic tool for analysis and construction of complex bacterial phenotypes. BMC Microbiol 11:38PubMed PubMedCentral CrossRef
    Martinez-Granero F, Navazo A, Barahona E, Redondo-Nieto M, Gonzalez de Heredia E, Baena I, Martin-Martin I, Rivilla R, Martin M (2014) Identification of flgZ as a flagellar gene encoding a PilZ domain protein that regulates swimming motility and biofilm formation in Pseudomonas. PLoS One 9:e87608PubMed PubMedCentral CrossRef
    Murphy K, Park AJ, Hao Y, Brewer D, Lam JS, Khursigara CM (2014) Influence of O polysaccharides on biofilm development and outer membrane vesicle biogenesis in Pseudomonas aeruginosa PAO1. J Bacteriol 196:1306–1317PubMed PubMedCentral CrossRef
    Nakao R, Ramstedt M, Wai SN, Uhlin BE (2012) Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis. PLoS One 7:e51241PubMed PubMedCentral CrossRef
    O’Toole GA, Gibbs KA, Hager PW, Phibbs PV Jr, Kolter R (2000) The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol 182:425–431PubMed PubMedCentral CrossRef
    Ochiai K, Kurita-Ochiai T, Kamino Y, Ikeda T (1993) Effect of co-aggregation on the pathogenicity of oral bacteria. J Med Microbiol 39:183–190PubMed CrossRef
    Panke S, Witholt B, Schmid A, Wubbolts MG (1998) Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl Environ Microbiol 64:2032–2043PubMed PubMedCentral
    Rahim R, Burrows LL, Monteiro MA, Perry MB, Lam JS (2000) Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology 146:2803–2814PubMed CrossRef
    Roemling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52CrossRef
    Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33CrossRef
    Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor
    Schembri MA, Hjerrild L, Gjermansen M, Klemm P (2003) Differential expression of the Escherichia coli autoaggregation factor antigen 43. J Bacteriol 185:2236–2242PubMed PubMedCentral CrossRef
    Schmutzler K, Schmid A, Buehler K (2015) A three-step method for analysing bacterial biofilm formation under continuous medium flow. Appl Microbiol Biotechnol 99:6035–6047PubMed CrossRef
    Simon R, Priefer U, Puhler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol 1:784–791CrossRef
    Sorroche FG, Spesia MB, Zorreguieta A, Giordano W (2012) A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Appl Environ Microbiol 78:4092–4101PubMed PubMedCentral CrossRef
    Starkey M, Hickman JH, Ma L, Zhang N, De Long S, Hinz A, Palacios S, Manoil C, Kirisits MJ, Starner TD, Wozniak DJ, Harwood CS, Parsek MR (2009) Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J Bacteriol 191:3492–3503PubMed PubMedCentral CrossRef
    Tamber S, Ochs MM, Hancock RE (2006) Role of the novel OprD family of porins in nutrient uptake in Pseudomonas aeruginosa. J Bacteriol 188:45–54PubMed PubMedCentral CrossRef
    Ulett GC, Valle J, Beloin C, Sherlock O, Ghigo JM, Schembri MA (2007) Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long-term persistence in the urinary tract. Infect Immun 75:3233–3244PubMed PubMedCentral CrossRef
    van den Berg B (2012) Structural basis for outer membrane sugar uptake in pseudomonads. J Biol Chem 287:41044–41052PubMed PubMedCentral CrossRef
    van der Mei HC, Weerkamp AH, Busscher HJ (1987) A comparison of various methods to determine hydrophobic properties of streptococcal cell surfaces. J Microbiol Methods 6:277–287CrossRef
    van Loosdrecht MC, Lyklema J, Norde W, Schraa G, Zehnder AJ (1987) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53:1893–1897PubMed PubMedCentral
    Volmer J, Neumann C, Buehler B, Schmid A (2014) Engineering of Pseudomonas taiwanensis VLB120 for constitutive solvent tolerance and increased specific styrene epoxidation activity. Appl Environ Microbiol 80:6539–6548PubMed PubMedCentral CrossRef
    Wei Q, Ma LZ (2013) Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci 14:20983–21005PubMed PubMedCentral CrossRef
    Witholt B, de Smet M-J, Kingma J, van Beilen JB, Kok M, Lageveen RG, Eggink G (1990) Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. Trends Biotechnol 8:46–52PubMed CrossRef
    Xu J, Zhao XP, Choi MH, Yoon SC (2010) Isolation and characterization of a transposon mutant of Pseudomonas fluorescens BM07 enhancing the production of polyhydroxyalkanoic acid but deficient in cold-induced exobiopolymer production. FEMS Microbiol Lett 305:91–99PubMed CrossRef
    Yokota S, Fujii N (2007) Contributions of the lipopolysaccharide outer core oligosaccharide region on the cell surface properties of Pseudomonas aeruginosa. Comp Immunol Microbiol Infect Dis 30:97–109PubMed CrossRef
    Zhang Y, Miller RM (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60:2101–2106PubMed PubMedCentral
  • 作者单位:Karolin Schmutzler (1) (2)
    Octavia Natascha Kracht (1)
    Andreas Schmid (2)
    Katja Buehler (2)

    1. Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
    2. Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Five mutants of Pseudomonas taiwanensis VLB120ΔCeGFP showed significant autoaggregation when growing on defined carbohydrates or gluconate, while they grew as suspended cells on complex medium and on organic acids like citrate and succinate. Surprisingly, the respective mutations affected very different genes, although all five strains exhibited the same behaviour of aggregate formation. To elucidate the mechanism of the aggregative behaviour, the microbial adhesion to hydrocarbons (MATH) assay and contact angle measurements were performed that pointed to an increased cell surface hydrophobicity. Moreover, investigations of the outer layer of the cell membrane revealed a reduced amount of O-specific polysaccharides in the lipopolysaccharide of the mutant cells. To determine the regulation of the aggregation, reverse transcription quantitative real-time PCR was performed and, irrespective of the mutation, the transcription of a gene encoding a putative phosphodiesterase, which is degrading the global second messenger cyclic diguanylate, was decreased or even deactivated in all mutants. In summary, it appears that the trophic autoaggregation was regulated via cyclic diguanylate and a link between the cellular cyclic diguanylate concentration and the lipopolysaccharide composition of P. taiwanensis VLB120ΔCeGFP is suggested.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.