Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints
详细信息    查看全文
  • 作者:K. C. Ganesh ; K. R. Balasubramanian
  • 刊名:Metallurgical and Materials Transactions B
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:47
  • 期:2
  • 页码:1347-1362
  • 全文大小:5,965 KB
  • 参考文献:1.P. Vasantharaja, V. Maduarimuthu, M. Vasudevan and P. Palanichamy, Mater. Manuf. Process., 2012, vol. 27, pp. 1376–81.CrossRef
    2.D. Deng and H. Murakawa, Comput. Mater. Sci. 2006, vol. 37, pp. 269–77.CrossRef
    3.T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K. S. Chandravathi, M. D. Mathew and A. K. Bhaduri, Mater. Sci. Eng. A, 2011, vol. 528, pp. 6971–80.CrossRef
    4.T.-S. Chern, K.-H. Tseng and H.-L. Tsai, Mater. Des. 2011, vol. 32, pp. 255–63.CrossRef
    5.W. Dong, S. Lu, D. Li and Y. Li, J. Mater. Eng. Perform., 2010, vol. 19, pp. 942–50.CrossRef
    6.D. Li, S. Lu, W. Dong, D. Li and Y. Li, J. Mater. Process. Technol., 2012, vol. 212, pp. 128–36.CrossRef
    7.S. W. Shyu, H. Y. Huang, K. H. Tseng and C. P. Chou, J. Mater. Eng. Perform., 2008, vol. 17, pp. 193-201.CrossRef
    8.Y. L. Xu, Z. B. Dong, Y. H. Wei and C. L. Yang, Theor. App. Fracture Mech., 2007, vol. 48, pp. 178–86.CrossRef
    9.H.-Y. Huang, Mater. Des., 2009, vol. 30, pp. 2404–09.CrossRef
    10.H. M. Aarbogh, M. Hamide, H. G. Fjær, A. Mo and M. Bellet, J. Mater. Process. Technol., 2010, vol. 210, pp. 1681–89.CrossRef
    11.Y. Javadi, H. S. Pirzaman, M. H. Raeisi and M. A. Najafabadi, Mater. Des. 2013, vol. 49, pp. 591–601.CrossRef
    12.F. Kong and R. Kovacevic, J. Mater. Process. Technol. 2010, vol. 210, pp. 941–50.CrossRef
    13.P. Palanichamy, M. Vasudevan and T. Jayakumar, Sci. Technol. Weld. Join., 2009, vol. 14, pp. 166–71.CrossRef
    14.N. S. Rossini, M. Dassisti, K. Y. Benyounis and A. G. Olabi, Mater. Des. 2012, vol. 35, pp. 572–88.CrossRef
    15.V. M. J. Varghese, M. R. Suresh and D. S. Kumar, Int. J. Adv. Manuf. Technol., 2013, vol. 64, pp. 749–54.CrossRef
    16.R.-H. Zhang, J.-L. Pan and S. Katayama, Front. Mater. Sci., 2011, vol. 5, pp. 109–18.CrossRef
    17.S. K. Velaga, G. Rajput, S. Murugan, A. Ravisankar and S. Venugopal, J. Manuf. Process., 2015, vol. 18, pp. 1–11.CrossRef
    18.S. A. A. Akbari Mousavi and R. Miresmaeili, J. Mater. Process. Technol., 2008, vol. 208, pp. 383–94.CrossRef
    19.M. J. Attarha and I. Sattari-Far, J. Mater. Process. Technol., 2011, vol. 211, pp. 688–94.CrossRef
    20.S. K. Bate, R. Charles and A. Warren, Int. J. Press. Vessel. Pip., 2009, vol. 86, pp. 73-78.CrossRef
    21.A. A. Deshpande, L. Xu, W. Sun, D. G. McCartney and T. H. Hyde, J. Strain Anal. Eng. Des., 2011, vol. 46, pp. 267–79.CrossRef
    22.K. C. Ganesh, M. Vasudevan, K. R. Balasubramanian, N. Chandrasekhar, S. Mahadevan, P. Vasantharaja and T. Jayakumar, Proc. Eng., 2014, vol. 86, pp. 767–74.CrossRef
    23.K. C. Ganesh, M. Vasudevan, K. R. Balasubramanian, N. Chandrasekhar and P. Vasantharaja, Mater. Manuf. Process., 2014, vol. 29, pp. 903–09.CrossRef
    24.L. E. Lindgren, Comput. Methods Appl. Mech. Eng., 2006, vol. 195, pp. 6710–36.CrossRef
    25.X. K. Zhu and Y. J. Chao, Comput. Struct., 2002, vol. 80, pp. 967–76.CrossRef
    26.A.I. Kothandaraman, P. Puthiyavinayagam, S. Jalaldeen, G.R. Ravi prasan and S. C. Ravichandar, IGCAR Design Data Book, 1992.
    27.W. Jiang and K. Yahiaoui, Int. J. Press. Vessel. Pip., 2012, vol. 95, pp. 39–47.CrossRef
  • 作者单位:K. C. Ganesh (1)
    K. R. Balasubramanian (1)
    M. Vasudevan (2)
    P. Vasantharaja (2)
    N. Chandrasekhar (2)

    1. Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
    2. Advanced Welding Processes and Modeling Section, Materials Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Manufacturing, Machines and Tools
    Metallic Materials
    Operating Procedures and Materials Treatment
    Characterization and Evaluation Materials
    Numerical and Computational Methods in Engineering
  • 出版者:Springer Boston
  • ISSN:1543-1916
文摘
The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.