Bioaugmentation with Novel Microbial Formula vs. Natural Attenuation of a Long-Term Mixed Contaminated Soil鈥擳reatability Studies in Solid- and Slurry-Phase Microcosms
详细信息    查看全文
  • 作者:Saranya Kuppusamy ; Palanisami Thavamani…
  • 关键词:Manufactured gas plant (MGP) ; Soil bioremediation ; Polycyclic aromatic hydrocarbons (PAHs) ; Heavy metals ; Natural attenuation ; Bacterial consortium ; Bioaugmentation
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:227
  • 期:1
  • 全文大小:1,687 KB
  • 参考文献:Adam, G., & Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology and Biochemistry, 33, 943鈥?51.CrossRef
    Alexander, M. (1999). Biodegradation and bioremediation (pp. 195鈥?99). London, England: Academic press.
    Alexander, M. (2000). Aging, bioavailability and overestimation of risk from environmental pollutants. Environmental Science and Technology, 34, 4259鈥?265.CrossRef
    Bento, F. M., Camargo, F. A., Okeke, B. C., & Frankenberger, W. T. (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresource Technology, 96, 1049鈥?055.CrossRef
    Boonchan, S., Britz, M. L., & Stanley, G. A. (2000). Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Applied and Environmental Microbiology, 66, 1007鈥?019.CrossRef
    Bossert, I. D., & Bartha, R. (1986). Structure-biodegradability relationships of polycyclic aromatic hydrocarbons in soil. Bulletin of Environmental Contamination and Toxicology, 37, 490鈥?95.CrossRef
    Cameotra, S. S., & Bollag, J. M. (2003). Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons. Critical Reviews in Environmental Science and Technology, 33, 111鈥?26.CrossRef
    Chen, S. H., & Aitken, M. D. (1999). Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environmental Science and Technology, 33, 435鈥?39.CrossRef
    Collina, E., Bestetti, G., Di Gennaro, P., Franzetti, A., Gugliersi, F., Lasagni, M., & Pitea, D. (2005). Naphthalene biodegradation kinetics in an aerobic slurry-phase bioreactor. Environmental International, 31, 167鈥?71.CrossRef
    Desai, A. M., Autenrieth, R. L., Dimitriou-Christidis, P., & McDonald, T. J. (2008). Biodegradation kinetics of select polycyclic aromatic hydrocarbon (PAH) mixtures by Sphingomonas paucimobilis EPA505. Biodegradation, 19, 223鈥?33.CrossRef
    Doick, K. J., & Semple, K. T. (2003). The effect of soil: water ratios on the mineralisation of phenanthrene: LNAPL mixtures in soil. FEMS Microbiology Letters, 220, 29鈥?3.CrossRef
    Edgehill, R. U. (1999) Bioremediation by Inoculation with Microorganisms. Bioremediation of contaminated soils. Agronomy monograph no. 37, Soil Science Society of Americam Madison, WI, pp. 289鈥?95.
    Ho, C. H., & Banks, M. (2006). Degradation of polycyclic aromatic hydrocarbons in the rhizosphere of Festuca arundinacea and associated microbial community changes. Bioremediation Journal, 10, 93鈥?04.CrossRef
    Huesemann, M. H., Hausmann, T. S., & Fortman, T. J. (2004). Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils. Biodegradation, 15, 261鈥?74.CrossRef
    Jacques, R. J., Okeke, B. C., Bento, F. M., Teixeira, A. S., Peralba, M. C., & Camargo, F. A. (2008). Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresource Technology, 99, 2637鈥?643.CrossRef
    Juhasz, A. L., Stanley, G. A., & Britz, M. L. (2000). Degradation of high molecular weight PAHs in contaminated soil by a bacterial consortium: Effects on microtox and mutagenicity bioassays. Bioremediation Journal, 4, 271鈥?83.CrossRef
    Kanaly, R. A., & Harayama, S. (2010). Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Journal of Microbiology and Biotechnology, 3, 136鈥?64.CrossRef
    Li, X., Li, P., Lin, X., Zhang, C., Li, Q., & Gong, Z. (2008). Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. Journal of Hazardous Materials, 150, 21鈥?6.CrossRef
    Lorch, H. J., Benckieser, G., & Ottow, J. C. G. (1995). Basic methods for counting microorganisms in soil water: most probable number (pp. 146鈥?61). New York: Academic Press.
    Mao, J., Luo, Y., Teng, Y., & Li, Z. (2012). Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. International Biodeterioration and Biodegradation, 70, 141鈥?47.CrossRef
    Mueller, J. G., Chapman, P. J., Blattmann, B. O., & Pritchard, P. (1990). Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Applied and Environmental Microbiology, 56, 1079鈥?086.
    Nam, K., Rodriguez, W., & Kukor, J. J. (2001). Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere, 45, 11鈥?0.CrossRef
    Nano, G., Borroni, A., & Rota, R. (2003). Combined slurry and solid-phase bioremediation of diesel contaminated soils. Journal of Hazardous Materials, 100, 79鈥?4.CrossRef
    Pereira Netto, A. D., Moreira, J. C., Dias, A. E. X., Arbilla, G., Ferreira, L. F. V., Oliveira, A. S., & Barek, J. (2000). Evaluation of human contamination with polycyclic aromatic hydrocarbons (PAHs) and their nitrated derivatives (NHPAS): a review of methodology. Quimica Nova, 23, 765鈥?73.CrossRef
    Phale, P. S., Basu, A., Majhi, P. D., Deveryshetty, J., Vamsee-Krishna, C., & Shrivastava, R. (2007). Metabolic diversity in bacterial degradation of aromatic compounds. OMICS, 11, 252鈥?79.CrossRef
    Sabate, J., Vinas, M., & Solanas, A. (2004). Laboratory-scale bioremediation experiments on hydrocarbon-contaminated soils. International Biodeterioration and Biodegradation, 54, 19鈥?5.CrossRef
    Semple, K. T., Dew, N. M., Doick, K. J., & Rhodes, A. H. (2006). Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil? Environmental Pollution, 140, 164鈥?72.CrossRef
    Stringfellow, W. T., & Aitken, M. D. (1995). Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading Pseudomonads. Applied and Environmental Microbiology, 61, 357鈥?62.
    Thavamani, P., Megharaj, M., & Naidu, R. (2012). Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium. Biodegradation, 23, 823鈥?35.CrossRef
    Thavamani, P., Megharaj, M., & Naidu, R. (2015). Metal-tolerant PAH-degrading bacteria: development of suitable test medium and effect of cadmium and its availability on PAH biodegradation. Environmetal Science and Pollution Research, 22, 8957鈥?968.
    Thiele-Bruhn, S., & Br眉mmer, G. (2005). Kinetics of polycyclic aromatic hydrocarbon (PAH) degradation in long-term polluted soils during bioremediation. Plant and Soil, 275, 31鈥?2.CrossRef
    van Veen, J. A., van Overbeek, L. S., & van Elsas, J. D. (1997). Fate and activity of microorganisms introduced into soil. Microbiology and Molecular Biology Reviews, 61, 121鈥?35.
    Vandermeer, K. D., & Daugulis, A. J. (2007). Enhanced degradation of a mixture of polycyclic aromatic hydrocarbons by a defined microbial consortium in a two-phase partitioning bioreactor. Biodegradation, 18, 211鈥?21.CrossRef
    Wang, J., Xu, H., & Guo, S. (2007). Isolation and characteristics of a microbial consortium for effectively degrading phenanthrene. Petroleum Science, 4, 68鈥?5.CrossRef
    Wang, C., Wang, F., Wang, T., Bian, Y., Yang, X., & Jiang, X. (2010). PAHs biodegradation potential of indigenous consortia from agricultural soil and contaminated soil in two-liquid-phase bioreactor (TLPB). Journal of Hazardous Materials, 176, 41鈥?7.CrossRef
  • 作者单位:Saranya Kuppusamy (1) (2)
    Palanisami Thavamani (2) (3)
    Mallavarapu Megharaj (2) (3)
    Ravi Naidu (2) (3)

    1. Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia
    2. Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA, 5106, Australia
    3. Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Terrestrial Pollution
    Hydrogeology
  • 出版者:Springer Netherlands
  • ISSN:1573-2932
文摘
Treatability studies in real contaminated soils are essential to predict the feasibility of microbial consortium augmentation for field-scale bioremediation of contaminated sites. In this study, the biodegradation of a mixture of seven PAHs in a manufactured gas plant (MGP) soil contaminated with 3967 mg kg鈭? of total PAHs using novel acid-, metal-tolerant, N-fixing, P-solubilizing, and biosurfactant-producing LMW and HMW PAH-degrading bacterial combinations as inoculums was compared in slurry- and solid-phase microcosms over natural attenuation. Bioaugmentation of 5 % of bacterial consortia A and N in slurry- and solid-phase systems enhanced 4.6鈥?.7 and 9.3鈥?0.7 % of total PAH degradation, respectively, over natural attenuation. Occurrence of 62.7鈥?8 % of PAH biodegradation during natural attenuation in soil and slurry illustrated the accelerated rate of intrinsic metabolic activity of the autochthonous microbial community in the selected MGP soil. Monitoring of the total microbial activity and population of PAH degraders revealed that the observed biodegradation trend in MGP soil resulted from microbial mineralization. In the slurry, higher biodegradation rate constant (k) and lower half-life values (t 1/2) was observed during bioaugmentation with consortium N, highlighting the use of bioaugmentation in bioslurries/bioreactor to achieve rapid and efficient bioremediation compared to that of a static solid system. In general, natural attenuation was on par with bioaugmentation. Hence, depending on the type of soil, natural attenuation might outweigh bioaugmentation and a careful investigation using laboratory treatability studies are highly recommended before the upscale of a developed bioremediation strategy to field level. Keywords Manufactured gas plant (MGP) Soil bioremediation Polycyclic aromatic hydrocarbons (PAHs) Heavy metals Natural attenuation Bacterial consortium Bioaugmentation
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.