Cell-Free Biosystems for Biomanufacturing
详细信息    查看全文
  • 作者:Chun You (1)
    Y.-H. Percival Zhang (1) (2) (3)
  • 关键词:Biocommodity engineering ; Bioeconomy ; Biofuels ; Biomanufacturing ; Cascade enzyme biocatalyst ; Cell ; free synthetic biology ; Synthetic pathway biotransformation
  • 刊名:Advances in Biochemical Engineering/Biotechnology
  • 出版年:2013
  • 出版时间:2013
  • 年:2013
  • 卷:131
  • 期:1
  • 页码:121-152
  • 全文大小:1425KB
  • 参考文献:1. Zhang Y-HP, Huang W-D (2012) Constructing the electricity-carbohydrate-hydrogen cycle for a sustainability revolution. Trends Biotechnol 30:301鈥?06 CrossRef
    2. Thiel KA (2004) Biomanufacturing, from bust to boom鈥o bubble? Nat Biotechnol 22:1365鈥?372 CrossRef
    3. Zhang Y-HP, Myung S, You C, Zhu ZG, Rollin J (2011) Toward low-cost biomanufacturing through cell-free synthetic biology: bottom-up design. J Mater Chem 21:18877鈥?8886 CrossRef
    4. Zhang Y-HP (2010) Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities. Biotechnol Bioeng 105:663鈥?77
    5. Vasic-Racki D (2006) History of industrial biotransformations鈥擠reams and realities. In: Liese A, Seebald S, Wandrey C (eds) Industrial biotransformations. Wiley-VCH, Weinheim, pp 1鈥?7
    6. Lopez-Gallego F, Schmidt-Dannert C (2010) Multi-enzymatic synthesis. Curr Opin Chem Biol 14:174鈥?83 CrossRef
    7. Ricca E, Brucher B, Schrittwieser JH (2011) Multi-enzymatic cascade reactions: overview and perspectives. Adv Synth Catal 353:2239鈥?262 CrossRef
    8. Santacoloma PA, Sin Gr, Gernaey KV, Woodley JM (2010) Multienzyme-catalyzed processes: next-generation biocatalysis. Org Proc Res Dev 15:203鈥?12
    9. Schoffelen S, van Hest JCM (2012) Multi-enzyme systems: bringing enzymes together in vitro. Soft Matter 8:1736鈥?746 CrossRef
    10. Katzen F, Chang G, Kudlicki W (2005) The past, present and future of cell-free protein synthesis. Trends Biotechnol 23:150鈥?56 CrossRef
    11. Hodgman CE, Jewett MC (2012) Cell-free synthetic biology: thinking outside the cell. Metab Eng 14:261鈥?69 CrossRef
    12. Bujara M, Sch眉mperli M, Billerbeck S, Heinemann M, Panke S (2010) Exploiting cell-free systems: Implementation and debugging of a system of biotransformations. Biotechnol Bioeng 106:376鈥?89
    13. Zhang YHP, You C, Chen H, Feng R (2012) Surpassing photosynthesis: High-efficiency and scalable CO2 utilization through artificial photosynthesis. In ACS Symposium Series . Recent Advances in Post-Combustion CO2 Capture Chemistry. American Chemical Society, pp275鈥?92
    14. Zhang Y-HP (2011) Simpler is better: high-yield and potential low-cost biofuels production through cell-free synthetic pathway biotransformation (SyPaB). ACS Catal 1:998鈥?009 CrossRef
    15. Huang WD, Zhang Y-HP (2011) Analysis of biofuels production from sugar based on three criteria: Thermodynamics, bioenergetics, and product separation. Energy Environ Sci 4:784鈥?92 CrossRef
    16. Maeda T, Sanchez-Torres V, Wood TK (2012) Hydrogen production by recombinant / Escherichia coli strains. Microb Biotechnol. doi: 10.1111/j.1751-7915.2011.00282.x
    17. Ye X, Wang Y, Hopkins RC, Adams MWW, Evans BR, Mielenz JR, Zhang Y-HP (2009) Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails. ChemSusChem 2:149鈥?52 CrossRef
    18. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375鈥?81 CrossRef
    19. Gellett W, Schumacher J, Kesmez M, Le D, Minteer SD (2010) High current density air-breathing laccase biocathode. J Electrochem Soc 157:B557鈥揃562 CrossRef
    20. Zebda A, Gondran C, Le Goff A, Holzinger M, Cinquin P, Cosnier S (2011) Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat Commun 2:370 CrossRef
    21. Zhang Y-HP (2010) Renewable carbohydrates are a potential high density hydrogen carrier. Int J Hydrogen Energy 35:10334鈥?0342 CrossRef
    22. Carlson ED, Gan R, Hodgman CE, Jewett MC (2012) Cell-free protein synthesis: applications come of age. Biotechnol Adv 30:1185鈥?194
    23. Guterl J-K, Garbe D, Carsten J, Steffler F, Sommer B, Rei脽e S, Philipp A, Haack M, R眉hmann B, Kettling U, et al (2012) Cell-free metabolic engineering鈥攑roduction of chemicals via minimized reaction cascades. ChemSusChem. doi: 10.1002/cssc.201200365
    24. Wang Y, Huang W, Sathitsuksanoh N, Zhu Z, Zhang Y-HP (2011) Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymatic pathways. Chem Biol 18:372鈥?80 CrossRef
    25. Zhang Y-HP, Sun J-B, Zhong J鈥揓 (2010) Biofuel production by in vitro synthetic pathway transformation. Curr Opin Biotechnol 21:663鈥?69 CrossRef
    26. Zhang Y-HP, Evans BR, Mielenz JR, Hopkins RC, Adams MWW (2007) High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS One 2:e456 CrossRef
    27. Bujara M, Sch眉mperli M, Pellaux R, Heinemann M, Panke S (2011) Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis. Nat Chem Biol 7:271鈥?77 CrossRef
    28. Swartz JR (2011) Transforming biochemical engineering with cell-free biology. AIChE J 58:5鈥?3 CrossRef
    29. Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751鈥?55 CrossRef
    30. Buchner E (1897) Alkoholische G盲rung ohne Hefezellen (Vorl盲ufige Mitteilung). Berichte der Deutschen Chemischen Gesellschaft 30:117鈥?24 CrossRef
    31. Harden A, Young WJ (1907) The alcoholic ferment of yeast-juice. Proc Roy Soc London 77B:405鈥?22
    32. Warburg OH (1926) 脺ber den Stoffwechsel der Tumoren. Springer, Berlin
    33. Cori CF (1931) Mammalian carbohydrate metabolism. Physiol Rev 11:143鈥?75
    34. Cori GT, Cori CF (1936) The formation of hexosephosphate esters in frog muscle. J Biol Chem 116:119鈥?28
    35. Krebs HA, Eggleston LV (1944) Metabolism of acetoacetic acid in animal tissues. Nature 154:209鈥?10 CrossRef
    36. Calvin M, Benson AA (1948) The path of carbon in photosynthesis. Science 107:476鈥?80 CrossRef
    37. Nirenberg MW, Matthaei JH (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA 47:1588鈥?602 CrossRef
    38. Michels P, Rosazza J (2009) The evolution of microbial transformations for industrial applications. SIM News 2009:36鈥?2
    39. Demain AL (2004) Pickles, pectin, and penicillin. Annu Rev Microbiol 58:1鈥?2 CrossRef
    40. Ye X, Zhang C, Zhang YHP (2012) Engineering a large protein by combined rational and random approaches: stabilizing the / Clostridium thermocellum cellobiose phosphorylase. Mol BioSyst 8:1815鈥?823 CrossRef
    41. Shiloach J, Fass R (2005) Growing / E. coli to high cell density鈥攁 historical perspective on method development. Biotechnol Adv 23:345鈥?57 CrossRef
    42. Wang Y, Zhang Y-HP (2009) Overexpression and simple purification of the / Thermotoga maritima 6-phosphogluconate dehydrogenase in / Escherichia coli and its application for NADPH regeneration. Microb Cell Fact 8:30 CrossRef
    43. Tufvesson Pr, Lima-Ramos J, Nordblad M, Woodley JM (2011) Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Proc Res Dev 15:266鈥?74
    44. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185鈥?94 CrossRef
    45. Daines AM, Maltman BA, Flitsch SL (2004) Synthesis and modifications of carbohydrates, using biotransformations. Curr Opin Chem Biol 8:106鈥?13 CrossRef
    46. Chi Y, Scroggins ST, Frechet JMJ (2008) One-pot multi-component asymmetric cascade reactions catalyzed by soluble star polymers with highly branched non-interpenetrating catalytic cores. J Am Chem Soc 130:6322鈥?323 CrossRef
    47. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506鈥?77 CrossRef
    48. Liao HH, Zhang XZ, Rollin JA, Zhang Y-HP (2011) A minimal set of bacterial cellulases for consolidated bioprocessing of lignocellulose. Biotechnol J 6:1409鈥?418 CrossRef
    49. Wildeman SMAD, Sonke T, Schoemaker HE, May O (2007) Biocatalytic reductions: from lab curiosity to 鈥渇irst choice鈥? Acc Chem Res 40:1260鈥?266 CrossRef
    50. Wichmann R, Vasic-Racki D (2005) Cofactor regeneration at the lab scale. Adv Biochem Eng Biotechnol 92:225鈥?60
    51. Bozic M, Pricelius S, Guebitz GM, Kokol V (2010) Enzymatic reduction of complex redox dyes using NADH-dependent reductase from / Bacillus subtilis coupled with cofactor regeneration. Appl Microbiol Biotechnol 85:563鈥?71 CrossRef
    52. Xu Z, Jing K, Liu Y, Cen P (2007) High-level expression of recombinant glucose dehydrogenase and its application in NADPH regeneration. J Ind Microbiol Biotechnol 34:83鈥?0 CrossRef
    53. Mertens R, Liese A (2004) Biotechnological applications of hydrogenases. Curr Opin Biotechnol 15:343鈥?48 CrossRef
    54. Johannes TW, Woodyer RD, Zhao H (2007) Efficient regeneration of NADPH using an engineered phosphite dehydrogenase. Biotechnol Bioeng 96:18鈥?6 CrossRef
    55. Schoevaart R, van Rantwijk F, Sheldon RA (2000) A four-step enzymatic cascade for the one-pot synthesis of non-natural carbohydrates from glycerol. J Org Chem 65:6940鈥?943 CrossRef
    56. Zhang J, Shao J, Kowal P, Wang PG (2005) Enzymatic Synthesis of Oligosaccharides. Wiley-VCH Verlag GmbH & Co.KGaA, Weinheim
    57. Fessner W-D, Helaine V (2001) Biocatalytic synthesis of hydroxylated natural products using aldolases and related enzymes. Curr Opin Biotechnol 12:574鈥?86 CrossRef
    58. Endo T, Koizumi S (2000) Large-scale production of oligosaccharides using engineered bacteria. Curr Opin Struct Biol 10:536鈥?41 CrossRef
    59. Wang Y, Zhang Y-HP (2009) Cell-free protein synthesis energized by slowly-metabolized maltodextrin. BMC Biotechnol 9:58 CrossRef
    60. Calhoun KA, Swartz JR (2005) An economical method for cell-free protein synthesis using glucose and nucleoside monophosphates. Biotechnol Prog 21:1146鈥?153 CrossRef
    61. Hold C, Panke S (2009) Towards the engineering of in vitro systems. J Royal Soc Interface 6:S507鈥揝521 CrossRef
    62. Panke S, Held M, Wubbolts M (2004) Trends and innovations in industrial biocatalysis for the production of fine chemicals. Curr Opin Biotechnol 15:272鈥?79 CrossRef
    63. Schultheisz HL, Szymczyna BR, Scott LG, Williamson JR (2008) Pathway engineered enzymatic de Novo purine nucleotide synthesis. ACS Chem Biol 3:499鈥?11 CrossRef
    64. Schultheisz HL, Szymczyna BR, Williamson JR (2009) Enzymatic synthesis and structural characterization of 13C, 15聽N-poly(ADP-ribose). J Am Chem Soc 131:14571鈥?4578 CrossRef
    65. Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777鈥?93 CrossRef
    66. Zhang Y-HP (2011) What is vital (and not vital) to advance economically-competitive biofuels production. Proc Biochem 46:2091鈥?110 CrossRef
    67. Zhang Y-HP (2011) Hydrogen production from carbohydrates: a mini-review. ACS Symp Ser 1067:203鈥?16 CrossRef
    68. Adams MWW, Stiefel EI (1998) Biological hydrogen production: not so elementary. Science 282:1842鈥?843 CrossRef
    69. Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418:964鈥?67 CrossRef
    70. Thauer K, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100鈥?80
    71. The Royal Society of the UK (2007) Synthetic biology: call for views. http://royalsociety.org/page.asp?changes=0&latest=1&id=6731
    72. Ye X, Rollin J, Zhang Y-HP (2010) Thermophilic 伪-glucan phosphorylase from / Clostridium thermocellum: cloning, Characterization and enhanced thermostability. J Mol Cat B Enzym 65:110鈥?16 CrossRef
    73. Wang Y, Zhang Y-HP (2010) A highly active phosphoglucomutase from / Clostridium thermocellum: Cloning, purification, characterization, and enhanced thermostability. J Appl Microbiol 108:39鈥?6 CrossRef
    74. Myung S, Wang YR, Zhang Y-HP (2010) Fructose-1,6-bisphosphatase from a hyper-thermophilic bacterium / Thermotoga maritima: Characterization, metabolite stability and its implications. Proc Biochem 45:1882鈥?887 CrossRef
    75. Sun FF, Zhang XZ, Myung S, Zhang Y-HP (2012) Thermophilic / Thermotoga maritima ribose-5-phosphate isomerase RpiB: Optimized heat treatment purification and basic characterization. Protein Expr Purif 82:302鈥?07 CrossRef
    76. Sun J, Hopkins RC, Jenney FE, McTernan PM, Adams MWW (2010) Heterologous expression and maturation of an NADP-dependent [NiFe]-hydrogenase: a key enzyme in biofuel production. PLoS One 5:e10526 CrossRef
    77. Zhang Y-HP, Mielenz JR (2011) Renewable hydrogen carrier鈥攃arbohydrate: constructing the carbon-neutral carbohydrate economy. Energies 4:254鈥?75 CrossRef
    78. Scopes RK (1993) Protein purification: principles and practice, 3rd edn. Springer, New York
    79. Hong J, Wang Y, Ye X, Zhang Y-HP (2008) Simple protein purification through affinity adsorption on regenerated amorphous cellulose followed by intein self-cleavage. J Chromatogr A 1194:150鈥?54 CrossRef
    80. Hong J, Ye X, Wang Y, Zhang Y-HP (2008) Bioseparation of recombinant cellulose binding module-protein by affinity adsorption on an ultra-high-capacity cellulosic adsorbent. Anal Chim Acta 621:193鈥?99 CrossRef
    81. Liao HH, Myung S, Zhang Y-HP (2012) One-step purification and immobilization of thermophilic polyphosphate glucokinase from / Thermobifida fusca YX: glucose-6-phosphate generation without ATP. Appl. Microbiol Biotechnol 93:1109鈥?117 CrossRef
    82. Myung S, Zhang X-Z, Zhang Y-HP (2011) Ultra-stable phosphoglucose isomerase through immobilization of cellulose-binding module-tagged thermophilic enzyme on low-cost high-capacity cellulosic adsorbent. Biotechnol Prog 27:969鈥?75 CrossRef
    83. Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89鈥?05 CrossRef
    84. Welch P, Scopes RK (1985) Studies on cell-free metabolism: Ethanol production by a yeast glycolytic system reconstituted from purified enzymes. J Biotechnol 2:257鈥?73 CrossRef
    85. Li S, Wen J, Jia X (2011) Engineering / Bacillus subtilis for isobutanol production by heterologous / Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol 91:577鈥?89 CrossRef
    86. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86鈥?9 CrossRef
    87. Moradian A, Benner SA (1992) A biomimetic biotechnological process for converting starch to fructose: thermodynamic and evolutionary considerations in applied enzymology. J Am Chem Soc 114:6980鈥?987 CrossRef
    88. Petitou M, van Boeckel CAA (2004) A synthetic antithrombin iii binding pentasaccharide is now a drug! What comes next? Angew Chem Int Ed 43:3118鈥?133 CrossRef
    89. Xu Y, Masuko S, Takieddin M, Xu H, Liu R, Jing J, Mousa SA, Linhardt RJ, Liu J (2011) Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins. Science 334:498鈥?01 CrossRef
    90. Moehlenbrock M, Minteer S (2008) Extended lifetime biofuel cells. Chem Soc Rev 37:1188鈥?196 CrossRef
    91. Zhang Y-HP, Xu J-H, Zhong JJ (2012) A new high-energy density hydrogen carrier - carbohydrate - might be better than methanol. Int. J. Energy Res. Epub, doi: 10.1002/er.2897
    92. Minteer SD, Liaw BY, Cooney MJ (2007) Enzyme-based biofuel cells. Curr. Opin. Biotechnol. 18:228鈥?34 CrossRef
    93. Cooney MJ, Svoboda V, Lau C, Martin G, Minteer SD (2008) Enzyme catalysed biofuel cells. Energy Environ Sci 1:320鈥?37 CrossRef
    94. Zhu ZG, Sun F, Zhang X, Zhang Y-HP (2012) Deep oxidation of glucose in enzymatic fuel cells through a synthetic enzymatic pathway containing a cascade of two thermostable dehydrogenases. Biosens Bioelectron 36:110鈥?15 CrossRef
    95. Palmore GTR, Bertschy H, Bergens SH, Whitesides GM (1998) A methanol/dioxygen biofuel cell that uses NAD+-dependent dehydrogenases as catalysts: application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J Electroanal Chem 443:155鈥?61 CrossRef
    96. Sokic-Lazic D, Minteer SD (2008) Citric acid cycle biomimic on a carbon electrode. Biosens Bioelectron 24:939鈥?44 CrossRef
    97. Arechederra RL, Treu BL, Minteer SD (2007) Development of glycerol/O-2 biofuel cell. J Power Sources 173:156鈥?61 CrossRef
    98. Sokic-Lazic D, Minteer SD (2009) Pyruvate/air enzymatic biofuel cell capable of complete oxidation. Electrochem Solid-State Lett 12:F26鈥揊28 CrossRef
    99. Moehlenbrock MJ, Toby TK, Waheed A, Minteer SD (2010) Metabolon catalyzed pyruvate/air biofuel cell. J Am Chem Soc 132:6288鈥?289 CrossRef
    100. Xu S, Minteer SD (2011) Enzymatic biofuel cell for oxidation of glucose to CO2. ACS Catal 1:91鈥?4
    101. Marsh JJ, Lebherz HG (1992) Fructose-bisphosphate aldolases: an evolutionary history. Trends Biochem Sci 17:110鈥?13 CrossRef
    102. Hibbert EG, Senussi T, Costelloe SJ, Lei W, Smith MEB, Ward JM, Hailes HC, Dalby PA (2007) Directed evolution of transketolase activity on non-phosphorylated substrates. J Biotechnol 131:425鈥?32 CrossRef
    103. Boyer ME, Stapleton JA, Kuchenreuther JM, Wang C-w, Swartz JR (2008) Cell-free synthesis and maturation of [FeFe] hydrogenases. Biotechnol Bioeng 99:59鈥?7
    104. Kim D-M, Swartz JR (2004) Efficient production of a bioactive, multiple disulfide-bonded protein using modified extracts of / Escherichia coli. Biotechnol Bioeng 85:122鈥?29 CrossRef
    105. Kanter G, Yang J, Voloshin A, Levy S, Swartz JR, Levy R (2007) Cell-free production of scFv fusion proteins: an efficient approach for personalized lymphoma vaccines. Blood 109:3393鈥?399 CrossRef
    106. Bundy BC, Franciszkowicz MJ, Swartz JR (2008) Escherichia coli-based cell-free synthesis of virus-like particles. Biotechnol Bioeng 100:28鈥?7 CrossRef
    107. Lee K-H, Kwon Y-C, Yoo SJ, Kim D-M (2010) Ribosomal synthesis and in situ isolation of peptide molecules in a cell-free translation system. Protein Expr Purif 71:16鈥?0 CrossRef
    108. Beveridge WIB (1960) The art of scientific investigation. Vintage, New York
    109. Smith P, Powlson DS, Glendining MJ, Smith JU (1998) Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming. Glob Change Biol 4:679鈥?85 CrossRef
    110. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083鈥?087 CrossRef
    111. Tishkov VI, Popov VO (2006) Protein engineering of formate dehydrogenase. Biomol Eng 23:89鈥?10 CrossRef
    112. You C, Myung S, Zhang Y-HP (2012) Facilitated substrate channeling in a self-assembled trifunctional enzyme complex. Angew Chem Int Ed 51:8787鈥?790 CrossRef
    113. Huang SY, Zhang Y-HP, Zhong JJ (2012) A thermostable recombinant transaldolase with high activity over a broad pH range. Appl Microbiol Biotechnol 93:2403鈥?410 CrossRef
    114. Zhang Y-HP (2011) Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol Adv 29:715鈥?25 CrossRef
    115. Bayer EA, Morag E, Lamed R (1994) The cellulosome鈥揳 treasure-trove for biotechnology. Trends Biotechnol 12:379鈥?86 CrossRef
    116. You C, Zhang X-Z, Sathitsuksanoh N, Lynd LR, Zhang Y-HP (2012) Enhanced microbial cellulose utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex. Appl Environ Microbiol 78:1437鈥?444 CrossRef
    117. You C, Zhang X-Z, Zhang YHP (2012) Mini-scaffoldin enhanced mini-cellulosome hydrolysis performance on low-accessibility cellulose (Avicel) more than on high-accessibility amorphous cellulose. Biochem Eng J 63:57鈥?5 CrossRef
    118. Mora茂s S, Barak Y, Hadar Y, Wilson DB, Shoham Y, Lamed R, Bayer EA (2011) Assembly of xylanases into designer cellulosomes promotes efficient hydrolysis of the xylan component of a natural recalcitrant cellulosic substrate. MBio 2 e00233-11
    119. Rogers TA, Bommarius AS (2010) Utilizing simple biochemical measurements to predict lifetime output of biocatalysts in continuous isothermal processes. Chem Eng Sci 65:2118鈥?124 CrossRef
    120. Cao L, Langen Lv, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:387鈥?94
    121. Cao L (2005) Immobilised enzymes: science or art? Curr Opin Chem Biol 9:217鈥?26 CrossRef
    122. Hartmann M, Jung D (2010) Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends. J Mater Chem 20:844鈥?57 CrossRef
    123. Arnold FH, Volkov AA (1999) Directed evolution of biocatalysts. Curr Opin Chem Biol 3:54鈥?9 CrossRef
    124. Eijsink VG, Bjork A, Gaseidnes S, Sirevag R, Synstad B, van den Burg B, Vriend G (2004) Rational engineering of enzyme stability. J Biotechnol 113:105鈥?20 CrossRef
    125. Scrutton NS, Berry A, Perham RN (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343:38鈥?3 CrossRef
    126. Zhang L, Ahvazi B, Szittner R, Vrielink A, Meighen E (1999) Change of nucleotide specificity and enhancement of catalytic efficiency in single point mutants of / Vibrio harveyi aldehyde dehydrogenase. Biochemistry 38:11440鈥?1447 CrossRef
    127. Yaoi T, Miyazaki K, Oshima T, Komukai Y, Go M (1996) Conversion of the coenzyme specificity of isocitrate dehydrogenase by module replacement. J Biochem 119:1014鈥?018 CrossRef
    128. Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MMY, Arnold FH (2011) Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in / Escherichia coli. Metab Eng 13:345鈥?52 CrossRef
    129. Rosell A, Valencia E, Ochoa WF, Fita I, Pares X, Farres J (2003) Complete reversal of coenzyme specificity by concerted mutation of three consecutive residues in alcohol dehydrogenase. J Biol Chem 278:40573鈥?0580 CrossRef
    130. D枚hr O, Paine MJI, Friedberg T, Roberts GCK, Wolf CR (2001) Engineering of a functional human NADH-dependent cytochrome P450 system. Proc Natl Acad Sci USA 98:81鈥?6 CrossRef
    131. Banta S, Swanson BA, Wu S, Jarnagin A, Anderson S (2002) Alteration of the specificity of the cofactor-binding pocket of / Corynebacterium 2,5-diketo-D-gluconic acid reductase A. Protein Eng Des Sel 15:131鈥?40 CrossRef
    132. Banta S, Swanson BA, Wu S, Jarnagin A, Anderson S (2002) Optimizing an artificial metabolic pathway: Engineering the cofactor specificity of / Corynebacterium 2,5-Diketo-D-gluconic acid reductase for use in vitamin C biosynthesis. Biochemistry 41:6226鈥?236 CrossRef
    133. Bocanegra JA, Scrutton NS, Perham RN (1993) Creation of an NADP-dependent pyruvate dehydrogenase multienzyme complex by protein engineering. Biochemistry 32:2737鈥?740 CrossRef
    134. Mittl PRE, Berry A, Scrutton NS, Perham RN, Schulz GE (1993) Structural differences between wild-type NADP-dependent glutathione reductase from / Escherichia coli and a redesigned NAD-dependent mutant. J Mol Biol 231:191鈥?95 CrossRef
    135. Steen IH, Lien T, Madsen MS, Birkeland N-K (2002) Identification of cofactor discrimination sites in NAD-isocitrate dehydrogenase from / Pyrococcus furiosus. Arch Microbiol 178:297鈥?00 CrossRef
    136. Watanabe S, Kodaki T, Makino K (2005) Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J Biol Chem 280:10340鈥?0349 CrossRef
    137. Glykys DJ, Banta S (2009) Metabolic control analysis of an enzymatic biofuel cell. Biotechnol Bioeng 102:1624鈥?635 CrossRef
    138. Woodyer RD, van der Donk WA, Zhao H (2003) Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design. Biochemistry 42:11604鈥?1614 CrossRef
    139. Wiegert T, Sahm H, Sprenger GA (1997) The substitution of a single amino acid residue (Ser-116聽鈫捖燗sp) alters NADP-containing glucose-fructose oxidoreductase of Zymomonas mobilis into a glucose dehydrogenase with dual coenzyme specificity. J Biol Chem 272:13126鈥?3133 CrossRef
    140. Katzberg M, Skorupa-Parachin N, Gorwa-Grauslund M-F, Bertau M (2010) Engineering cofactor preference of ketone reducing biocatalysts: A mutagenesis study on a 纬-Diketone reductase from the yeast Saccharomyces cerevisiae serving as an example. Int J Mol Sci 11:1735鈥?758 CrossRef
    141. Sanli G, Banta S, Anderson S, Blaber M (2004) Structural alteration of cofactor specificity in Corynebacterium 2,5-diketo-D-gluconic acid reductase. Protein Eng 13:504鈥?12
    142. Campbell E, Wheeldon IR, Banta S (2010) Broadening the cofactor specificity of a thermostable alcohol dehydrogenase using rational protein design introduces novel kinetic transient behavior. Biotechnol Bioeng 107:763鈥?74 CrossRef
    143. Burton SJ, Vivian Stead C, Ansell RJ, Lowe CR (1996) An artificial redox coenzyme based on a triazine dye template. Enzym Microb Technol 18:570鈥?80
    144. Ansell RJ, Dilmaghanian S, Stead CV, Lowe CR (1997) Synthesis and properties of new coenzyme mimics based on the artificial coenzyme Blue N-3. Enzym Microb Technol 21:327鈥?34 CrossRef
    145. Ansell RJ, Small DAP, Lowe CR (1997) Characterisation of the artificial coenzyme CL4. J Mol Catal B Enzym 3:239鈥?52 CrossRef
    146. Ansell RJ, Lowe CR (1999) Artificial redox coenzymes: biomimetic analogues of NAD+. Appl Microbiol Biotechnol 51:703鈥?10 CrossRef
    147. Ansell RJ, Small DAP, Lowe CR (1999) Synthesis and properties of new coenzyme mimics based on the artificial coenzyme CL4. J Mol Recognit 12:45鈥?6 CrossRef
    148. Lo HC, Leiva C, Buriez O, Kerr JB, Olmstead MM, Fish RH (2001) Bioorganometallic chemistry. 13. regioselective reduction of NAD+ models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5鈥?methyl phosphate, with in situ generated [Cp*Rh(Bpy)H]+: structure鈥揳ctivity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives. Inorg Chem 40:6705鈥?716 CrossRef
    149. Lo HC, Fish RH (2002) Biomimetic NAD+ models for tandem cofactor regeneration, horse liver alcohol dehydrogenase recognition of 1,4-NADH derivatives, and chiral synthesis. Angew Chem Int Ed 41:478鈥?81 CrossRef
    150. Lutz J, Hollmann F, Ho TV, Schnyder A, Fish RH, Schmid A (2004) Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic NAD+/NADH co-factors and [Cp*Rh(bpy)H]+ for selective organic synthesis. J Organomet Chem 689:4783鈥?790 CrossRef
    151. Ryan JD, Fish RH, Clark DS (2008) Engineering cytochrome P450 enzymes for improved activity towards biomimetic 1,4-NADH cofactors. ChemBioChem 9:2579鈥?582 CrossRef
    152. Nazor J, Schwaneberg U (2006) Laboratory evolution of P450 BM-3 for mediated electron transfer. ChemBioChem 7:638鈥?44 CrossRef
    153. Nazor J, Dannenmann S, Adjei RO, Fordjour YB, Ghampson IT, Blanusa M, Roccatano D, Schwaneberg U (2008) Laboratory evolution of P450 BM3 for mediated electron transfer yielding an activity-improved and reductase-independent variant. Protein Eng Des Sel 21:29鈥?5 CrossRef
    154. Ji D, Wang L, Hou S, Liu W, Wang J, Wang Q, Zhao ZK (2011) Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide. J Am Chem Soc 133:20857鈥?0862 CrossRef
    155. Plapp BV, Sogin DC, Dworschack RT, Bohlken DP, Woenckhaus C, Jeck R (1986) Kinetics and native and modified liver alcohol dehydrogenase with coenzyme analogs: isomerization of enzyme-nicotinamide adenine dinucleotide complex. Biochemistry 25:5396鈥?402 CrossRef
    156. Fisher HF, McGregor LL (1969) The ability of reduced nicotinamide mononucleotide to function as a hydrogen donor in the glutamic dehydrogenase reaction. Biochem Biophys Res Commun 34:627鈥?32 CrossRef
    157. Campbell E, Meredith M, Minteer SD, Banta S (2012) Enzymatic biofuel cells utilizing a biomimetic cofactor. Chem Commun 48:1898鈥?900 CrossRef
    158. Schoevaart R, van Rantwijk F, Sheldon RA (1999) Carbohydrates from glycerol: an enzymatic four-step, one-pot synthesis. Chem Commun 31:2465鈥?466 CrossRef
    159. You C, Zhang Y-HP (2012) Self-assembly of synthetic metabolons through synthetic protein scaffolds: one-step purification, co-immobilization, and substrate channeling. ACS Syn. Biol. doi: 10.1021/sb300068g
    160. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207鈥?34 CrossRef
    161. Banki MR, Feng L, Wood DW (2005) Simple bioseparations using self-cleaving elastin-like polypeptide tags. Nat Methods 2:659鈥?62 CrossRef
    162. Iturrate L, Sanchez-Moreno I, Doyaguez EG, Garcia-Junceda E (2009) Substrate channelling in an engineered bifunctional aldolase/kinase enzyme confers catalytic advantage for C鈥揅 bond formation. Chem Commun 2009:1721鈥?723 CrossRef
    163. Bulow L, Ljungcrantz P, Mosbach K (1985) Preparation of a soluble bifunctional enzyme by gene fusion. Nat Biotechnol 3:821鈥?23 CrossRef
    164. Chen X, Liu Z, Zhang J, Zhang W, Kowal P, Wang P (2002) Reassembled biosynthetic pathway for large-scale carbohydrate synthesis: 伪-gal epitope producing 鈥渟uperbug鈥? ChemBioChem 4:47鈥?3 CrossRef
    165. Nahalka J, Liu Z, Chen X, Wang PG (2003) Superbeads: Immobilization in 鈥渟weet鈥?chemistry. Chem Eur J 9:372鈥?77 CrossRef
    166. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297鈥?06 CrossRef
    167. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345鈥?51 CrossRef
    168. Liu W, Wang P (2007) Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol Adv 25:369鈥?84 CrossRef
    169. Chen K, Arnold FH (1993) Turning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc Natl Acad Sci USA 90:5618鈥?622
  • 作者单位:Chun You (1)
    Y.-H. Percival Zhang (1) (2) (3)

    1. Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA, 24061, USA
    2. Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, Blacksburg, VA, 24061, USA
    3. Gate Fuels Inc., 2200 Kraft Drive, Suite 1200B, Blacksburg, VA, 24060, USA
  • ISSN:1616-8542
文摘
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.