Assessment of reduced-complexity landscape evolution model suitability to adequately simulate flood events in complex flow conditions
详细信息    查看全文
文摘
Flood hazard modeling is an important task for decision making in the flood management aiming at preventing human and material losses. There is therefore a pressing need for reliable predictive tools in order to identify flood-prone areas. Recently, with the increase in cheap computational power, most studies in this context use one- or two-dimensional (1-D, 2-D) deterministic hydraulic models, which provide estimates of the flood extent and depth with satisfactory accuracy at reduced time. These models, however, capture only a relatively small fraction of the active processes by simulating flood without consideration of morphological change, while 2-D/3-D hydro-morphodynamic solutions are more realistic by considering the influences of channel and floodplain morphologies to simulate inundation flow. This research seeks to assess the suitability of a landscape evolution model (LEM) to simulate adequately the hydraulics of flood events in a real case scenario. We opted to use the 2-D model cellular automaton evolutionary slope and river (CAESAR) which is originally a LEM that has recently undergone a real evolution by integrating the hydrodynamic flow routing algorithm LISFLOOD-FP (LF). CAESAR-LISFLOOD (CAESAR-LF) is a reduced-complexity and depth-integrated 2-D storage cell model that simulates flow and sediment transport in response to hydrological inputs. The area is an urban reach of the river Bouregreg (Morocco) having a large and swampy floodplain with complex topography. Performance of the reduced-complexity model CAESAR-LF in flood mapping is investigated and benchmarked against the one-dimensional (1-D) hydraulic model Hydrologic Engineering Center River Analysis System (HEC-RAS). Combined climate and hydrologic modeling were used to generate input flow data for hydraulic models. The results from both approaches agree well and show a relative good consistency in estimating flood extent and magnitude. Some differences occur, but these can easily be explained as a result of unavoidable differences in concepts and implementation.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.