Production and applications of crude polyhydroxyalkanoate-containing bioplastic from the organic fraction of municipal solid waste
详细信息    查看全文
  • 作者:V. Ivanov (1)
    V. Stabnikov (2)
    Z. Ahmed (3)
    S. Dobrenko (4)
    A. Saliuk (5)

    1. Department of Civil
    ; Construction and Environmental Engineering ; Iowa State University ; Ames ; IA ; 50011 ; USA
    2. Department of Biotechnology and Microbiology
    ; National University of Food Technologies ; Kiev ; 01601 ; Ukraine
    3. Department of Civil Engineering
    ; King Abdulaziz University ; Jeddah ; Kingdom of Saudi Arabia
    4. ASA College
    ; Brooklyn ; NY ; 11201 ; USA
    5. Department of Biochemistry and Ecological Control
    ; National University of Food Technologies ; Kiev ; 01601 ; Ukraine
  • 关键词:Bioplastic ; Polyhydroxyalkanoates ; Municipal solid waste ; Construction material
  • 刊名:International Journal of Environmental Science and Technology
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:12
  • 期:2
  • 页码:725-738
  • 全文大小:748 KB
  • 参考文献:1. Abd-El-Haleem D, Amara A, Zaki S, Abulhamd A, Abulreesh G (2007) Biosynthesis of biodegradable polyhydroxyalkanotes biopolymers in genetically modified yeasts. Int J Environ Sci Technol 4:513鈥?20 CrossRef
    2. Abouelenien F, Fujiwara W, Namba Y, Kosseva M, Nishio N, Nakashimada Y (2010) Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresour Technol 101:6368鈥?373 CrossRef
    3. Barlaz MA, Staley BF, De Los Reyes FL III (2010) Anaerobic biodegradation of solid waste. In: Mitchell R, Gu JD (eds) Environmental microbiology, 2nd edn. Wiley, Hoboken, pp 281鈥?99 CrossRef
    4. Ben Rebah F, Yan S, Filali-Meknassi Y, Tyagi RD, Surampalli RY (2004) Bacterial production of bioplastics. In: Surampalli RY, Tyagi RD (eds) Advances in water and wastewater treatment. ASCE Publications, pp 42鈥?1
    5. Bolzonella D, Fatone F, Pavan P, Cecchi F (2005) Anaerobic fermentation of organic municipal solid wastes for the production of soluble organic compounds. Ind Eng Chem Res 44:3412鈥?418 CrossRef
    6. Braun R, Drosg B, Bochmann G, Weiss S, Kirchmayr R (2010) Recent developments in bio-energy recovery through fermentation. In: Insam H, Franke-Whittle I, Goberna M (eds) Microbes at work, from waste to resources. Springer, Berlin, pp 35鈥?8 CrossRef
    7. Buathong S, Chiemchaisri C, Chiemchaisri W, Hiroyasu Satoh H (2012) Polyhydroxyalkanoate (PHA) production potential of activated sludge from food industrial wastewater treatment process. Int J Environ Eng 4:210鈥?19 CrossRef
    8. Castilho LR, Mitchell DA, Freire DMG (2009) Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour Technol 100:5996鈥?009 CrossRef
    9. Cesaro A, Belgiorno V, Naddeo V (2011) Comparative technology assessment of anaerobic digestion of organic fraction of MSW. In: Brebbia CA (ed) The sustainable world. Wessex Institute of Technology, Ashurst, pp 355鈥?66
    10. Chen BK, Lo SH (2012) Thermally stable biopolymer for tissue scaffolds. Plastic research online. Soc Plast Eng. doi:10.2417/spepro.004171 , http://www.4spepro.org
    11. Chen GQ, Wu Q, Wang Y, Zheng Z (2005) Application of microbial polyesters-polyhydroxyalkanoates as tissue engineering materials. Key Eng Mater 288鈥?89:437鈥?40 CrossRef
    12. Choi D, Chipman D, Bents S, Brown R (2010) A techno-economic analysis of polyhydroxyalkanoates and hydrogen production from syngas fermentation of gasified biomass. Appl Biochem Biotechnol 160:1032鈥?046 CrossRef
    13. Dobrenko S, Joarder M (2011) Business aspects of municipal solid waste and technology of hydroseparation in the USA. J Bus Glob 2:25鈥?8
    14. Dobrenko S, Maksimov V, Pryakhin V, Lazarenko M (2012) Comparative analysis of aero- and hydroseparation of municipal solid waste. In: Proceedings international conference. The role of water reclamation in the innovative development of agriculture, Moscow, pp 22鈥?2
    15. Du C, Sabirova J, Soetaert W, Lin SKC (2012) Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr Chem Biol 6:14鈥?5
    16. Giner JME, Boronat T, Balart R, Fages E, Moriana R (2012) Antioxidant effects of natural compounds on green composite materials. Plastic research online. Soc Plast Eng. doi:10.2417/spepro.004379 , http://www.4spepro.org
    17. Gray NF (2004) Biology of wastewater treatment. Imperial College Press, London
    18. Gumel AM, Annuar MSM, Heidelberg T (2012) Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by / Pseudomonas putida bet001 isolated from palm oil mill effluent. PLoS ONE 7:e45214. doi:10.1371/journal.pone.0045214 CrossRef
    19. Ivanov V (2010) Environmental microbiology for engineers. CRC Press, Boca Raton
    20. Ivanov V, Chu J (2008) Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Environ Sci Biotechnol 7:139鈥?53 CrossRef
    21. Ivanov VN, Stabnikova EV, Stabnikov VP, Kim IS, Zubair A (2002) Effects of iron compounds on the treatment of fat-containing wastewaters. Appl Biochem Microbiol 38:255鈥?58 CrossRef
    22. Jacquel N, Lo CW, Wei YH, Wu HS, Wang SS (2008) Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochem Eng J 39:15鈥?7 CrossRef
    23. Kelleher M (2007) Anaerobic digestion outlook for MSW streams. BioCycle 48:51鈥?5
    24. Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13:321鈥?26 CrossRef
    25. Lei X, Sugiura N, Feng C, Maekawa T (2007) Pretreatment of anaerobic digestion effluent with ammonia stripping and biogas purification. J Hazard Mater 145:391鈥?97 CrossRef
    26. Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6:1鈥? CrossRef
    27. Lu Y (2007) Advance on the production of polyhydroxyalkanoates by mixed cultures. Front Biol China 2:1673鈥?509
    28. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506鈥?77 CrossRef
    29. Macias-Corral M, Samani Z, Hanson A (2008) Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresour Technol 99:8288鈥?293 CrossRef
    30. Madigan MT, Martinko JM, Stahl D, David P, Clark DP (2012) Brock biology of microorganisms, 13th edn. Pearson, London
    31. Maness PC, Weaver PF (1994) Production of poly-3-hydroxyalkanoates from CO and H2 by a novel photosynthetic bacterium. Appl Biochem Biotechnol 45(46):395鈥?06 CrossRef
    32. Md Din MF, Ponraj M, van Loosdrecht MCM, Ujang Z, Chelliapan S, Zambare V (2013) The utilization of palm oil mill effluent for polyhydroxyalkanoate production and nutrient removal using statistical design. Int J Environ Sci Techno. doi:10.1007/s13762-013-0253-9
    33. Mergaert J, Anderson C, Wouters A, Swings J, Kerster K (1992) Biodegradation of polyhydroxyalkanoates. FEMS Microbiol Rev 103:317鈥?22 CrossRef
    34. Mokhtarani N, Ganjidoust H, Farahani EV (2012) Effect of process variables on the production of polyhydroxyalkanoates by activated sludge. Iran J Environ Health Sci Eng. doi:10.1186/1735-2746-9-6
    35. Mudhoo A, Kumar S (2013) Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. Int J Environ Sci Technol 10:1383鈥?398. doi:10.1007/s13762-012-0167-y CrossRef
    36. O鈥橣laherty V, Collins G, Mahony T (2010) Anaerobic digestion of agricultural residues. In: Mitchell R, Gu JD (eds) Environmental microbiology, 2nd edn. Wiley, Hoboken, pp 259鈥?79 CrossRef
    37. Palmeri R, Pappalardo F, Fragala M, Tomasello M, Damigella A, Catara AF (2012) Polyhydroxyalkanoates (PHAs) production through conversion of glycerol by selected strains of / Pseudomonas mediterranea and / Pseudomonas corrugata. Chem Engrg Transactions 27:121鈥?26. doi:10.3303/CET1227021
    38. Plank J (2004) Application of biopolymers and other biotechnological products in building materials. Appl Microbiol Biotechnol 66:1鈥? CrossRef
    39. Preethi R, Sasikala P, Aravind J (2012) Microbial production of polyhydroxyalkanoate (PHA) utilizing fruit waste as a substrate. Res Biotech 3:61鈥?9
    40. Rahman MO, Hussain A, Basri H (2013) A critical review on waste paper sorting techniques. Int J Environ Sci Technol. doi:10.1007/s13763-013-0223-3
    41. Ramesh BNG, Anitha N, Rani HKR (2010) Recent trends in biodegradable products from biopolymers. Adv Biotech 9:30鈥?4
    42. Salehizadeh H, Van Loosdrecht MCM (2004) Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol Adv 22:261鈥?79 CrossRef
    43. Sandhya M, Aravind J, Kanmani P (2013) Production of polyhydroxyalkanoates from / Ralstonia eutropha using paddy straw as cheap substrate. Int J Environ Sci Technol 10:47鈥?4 CrossRef
    44. Selvakumar K, Srinivasan G, Baskar V, Madhan R (2011) Production and isolation of polyhydroxyalkanoates from / Haloarcula marismortui MTCC 1596 using cost effective osmotic lysis methodology. Eur J Exp Biol 1:180鈥?87
    45. Serafim LS, Lemos PC, Albuquerque MGE, Reis MAM (2008) Strategies for PHA production by mixed cultures and renewable waste materials. Appl Microbiol Biotechnol 81:615鈥?28 CrossRef
    46. Stabnikov VP, Ivanov VN (2006) The effect of iron hydroxide concentrations on the anaerobic fermentation of sulfate-containing model wastewater. Appl Biochem Microbiol 42:284鈥?88 CrossRef
    47. Strauber H, Schroder M, Kleinsteuber S (2012) Metabolic and microbial community dynamics during the hydrolytic and acidogenic fermentation in a leach-bed process. Energy Sustain Soc 2:13 CrossRef
    48. Sudesh K (2013) Polyhydroxyalkanoates from palm oil: biodegradable plastics. Springer, Heidelberg, p 130 CrossRef
    49. Sudesh K, Abe H (2010) Practical guide to microbial polyhydroxyalkanoates. Smithers Rapra Technology, Shrewsbury, p 160
    50. US EPA (2011) Municipal solid waste generation, recycling, and disposal in the United States: Facts and figures for 2010. http://www.epa.gov/epawaste/nonhaz/municipal/pubs/2010_MSW_Tables_and_Figures_508
    51. Van Hee P, Elumbaring CMRA, Van der Lans RGJM, Van der Wielen LAM (2006) Selective recovery of polyhydroxyalkanoate inclusion bodies from fermentation broth by dissolved-air flotation. J Coll Interface Sci 297:595鈥?06 CrossRef
    52. Verbeek CJR, van den Berg LE (2009) Extrusion processing and properties of protein-based thermoplastics. Macromol Mater Eng. doi:10.1002/mame.200900167
    53. Vishnuvardhan RS, Thirumala M (2012) Isolation of polyhydroxyalkanoates (PHA) producing bacteria from contaminated soils. Int J Environ Biol 2:104鈥?07
    54. Volova TG (2004) Polyhydroxyalkanoates鈥攑lastic materials of the 21st century. Nova Publishers, Hauppauge
    55. Wang YS, Odle W, Eleazer WE, Barlaz MA (1997) Methane potential of food waste and anaerobic toxicity of leachate produced during food waste decomposition. Waste Manag Res 15:149鈥?67 CrossRef
    56. Yee LN, Mumtaz T, Mohammadi M, Phang LY, Ando Y, Raha AR, Sudesh K, Ariffin H, Hassan MA, Zakaria MR (2012) Polyhydroxyalkanoate synthesis by recombinant / Escherichia coli JM109 expressing PHA biosynthesis genes from / Comamonas sp. EB172. Microb Biochem Technol 4:103鈥?10 CrossRef
    57. Yu J (2006) Production of biodegradable thermoplastic materials from organic wastes. US Patent 7,141,400. November 28, 2006
  • 刊物主题:Environment, general; Environmental Science and Engineering; Environmental Chemistry; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution; Soil Science & Conservation; Ecotoxicology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1735-2630
文摘
A considerable economic and environmental need exists for the further development of degradable plastic polyhydroxyalkanoates (PHAs), which are produced by bacteria. However, the production cost of this bioplastic, manufactured using conventional technologies, is several times higher than that of petrochemical-based plastics. This is a major obstacle for the industrial production of PHA bioplastic for non-medical use. The aim of this review is to evaluate suitable methods for the significant reduction in bioplastic production costs. The study findings are as follows: (1) The organic fraction of municipal solid waste can be used as a raw material through acidogenic fermentation; (2) non-aseptic cultivation using mixed bacterial culture can significantly reduce the production cost; (3) biotechnology of bacterial cultivation should ensure selection of PHA-accumulating strains; (4) applications of PHA-containing material in both construction industry and agriculture do not require expensive extraction of PHAs from bacterial biomass. The implementation of the above findings in the current manufacturing process of PHA-containing bioplastic would significantly reduce production costs, thereby rendering PHA-containing bioplastic an economically viable and environmentally friendly alternative to petrochemical-based plastics.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.