The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors
详细信息    查看全文
  • 作者:Gossaye Tirunehe ; B. Norddahl
  • 关键词:Bubble column ; Membrane sparger ; Bubble size distribution ; Interfacial area ; Overall mass transfer coefficient
  • 刊名:Bioprocess and Biosystems Engineering
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:39
  • 期:4
  • 页码:613-626
  • 全文大小:1,504 KB
  • 参考文献:1.Luo G, Angelidaki I (2012) Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture. Biotechnol Bioeng 109:2729–2736. doi:10.​1002/​bit.​24557 CrossRef
    2.Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176. doi:10.​1016/​j.​biotechadv.​2008.​10.​006 CrossRef
    3.Zilli Converti A, Mario Arni, Saleh Di Felice, Renzo Del Borghi, Marco (1999) Estimation of viscosity of highly viscous fermentation media containing one or more solutes. Biochem Eng J Biochem Eng J 4:81–85
    4.Moo-Young M, Halard B, Allen DG et al (1987) Oxygen transfer to mycelial fermentation broths in an airlift fermentor. Biotechnol Bioeng 30:746–753. doi:10.​1002/​bit.​260300607 CrossRef
    5.Kantarci N, Borak F, Ulgen KO (2005) Bubble column reactors. Process Biochem 40:2263–2283. doi:10.​1016/​j.​procbio.​2004.​10.​004 CrossRef
    6.Mouza AA, Dalakoglou GK, Paras SV (2005) Effect of liquid properties on the performance of bubble column reactors with fine pore spargers. Chem Eng Sci 60:1465–1475. doi:10.​1016/​j.​ces.​2004.​10.​013 CrossRef
    7.Poulsen BR, Iversen JJL (1999) Membrane sparger in bubble column, airlift, and combined membrane–ring sparger bioreactors. Biotechnol Bioeng 64:452–458. doi:10.1002/(SICI)1097-0290(19990820)64:4<452:AID-BIT8>3.0.CO;2-#CrossRef
    8.Deckwer W-D, Nguyen-Tien K, Schumpe A, Serpemen Y (1982) Oxygen mass transfer into aerated CMC solutions in a bubble column. Biotechnol Bioeng 24:461–481. doi:10.​1002/​bit.​260240215 CrossRef
    9.Bouaifi M, Hebrard G, Bastoul D, Roustan M (2001) A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas–liquid reactors and bubble columns. Chem Eng Process Process Intensif 40:97–111CrossRef
    10.Poulsen BR, Iversen JJL (1998) Characterization of gas transfer and mixing in a bubble column equipped with a rubber membrane diffuser. Biotechnol Bioeng 58:633–641. doi:10.​1002/​(SICI)1097-0290(19980620)58:​6<633:​AID-BIT9>3.​0.​CO;2-J CrossRef
    11.Sarbatly RH, Suali E (2013) Membrane photobioreactor as a device to increase CO2 mitigation by microalgae. In: Pogaku R, Sarbatly RH (eds) Advanced biofuels. Springer, Boston, pp 241–258CrossRef
    12.Wei C, Wu B, Li G et al (2014) Comparison of the hydrodynamics and mass transfer characteristics in internal-loop airlift bioreactors utilizing either a novel membrane-tube sparger or perforated plate sparger. Bioprocess Biosyst Eng 37:2289–2304. doi:10.​1007/​s00449-014-1207-4 CrossRef
    13.Eshtiaghi N, Yap SD, Markis F et al (2012) Clear model fluids to emulate the rheological properties of thickened digested sludge. Water Res 46:3014–3022. doi:10.​1016/​j.​watres.​2012.​03.​003 CrossRef
    14.Bajón Fernández Y, Cartmell E, Soares A et al (2015) Gas to liquid mass transfer in rheologically complex fluids. Chem Eng J 273:656–667. doi:10.​1016/​j.​cej.​2015.​03.​051 CrossRef
    15.Li S, Ma Y, Fu T et al (2012) The viscosity distribution around a rising bubble in shear-thinning non-newtonian fluids. Braz J Chem Eng 29:265–274. doi:10.​1590/​S0104-6632201200020000​7 CrossRef
    16.Wang Bai F, Liping Huang, Hanjing Xu, Jianfeng Caesar, Jim Ridgway, Darin Gu, Tingyue Moo-Young, Murray (2001) Oxygen mass-transfer performance of low viscosity gas-liquid-solid system in a split-cylinder airlift bioreactor. Biotechnol Lett 23:1109–1113CrossRef
    17.Akita K, Yoshida F (1973) Gas holdup and volumetric mass transfer coefficient in bubble columns. effects of liquid properties. Ind Eng Chem Process Des Dev 12:76–80. doi:10.​1021/​i260045a015 CrossRef
    18.Agrawal S (2013) Bubble dynamics and interface phenomenon. J Eng Technol Res 5:42–50. doi:10.​5897/​JETR2013.​0297 CrossRef
    19.Lau YM, Deen NG, Kuipers JAM (2013) Development of an image measurement technique for size distribution in dense bubbly flows. Chem Eng Sci 94:20–29. doi:10.​1016/​j.​ces.​2013.​02.​043 CrossRef
    20.Schäfer R, Merten C, Eigenberger G (2002) Bubble size distributions in a bubble column reactor under industrial conditions. Exp Therm Fluid Sci 26:595–604. doi:10.​1016/​S0894-1777(02)00189-9 CrossRef
    21.Kulkarni AA, Joshi JB (2005) Bubble Formation and Bubble Rise Velocity in Gas − Liquid Systems: a Review. Ind Eng Chem Res 44:5873–5931. doi:10.​1021/​ie049131p CrossRef
    22.Haapala A, Honkanen M, Liimatainen H et al (2010) Hydrodynamic drag and rise velocity of microbubbles in papermaking process waters. Chem Eng J 162:956–964. doi:10.​1016/​j.​cej.​2010.​07.​001 CrossRef
    23.Nedeltchev S, Jordan U, Schumpe A (2010) Semi-theoretical prediction of volumetric mass transfer coefficients in bubble columns with organic liquids at ambient and elevated temperatures. Can J Chem Eng 88:523–532. doi:10.​1002/​cjce.​20309 CrossRef
    24.Godbole SP, Schumpe A, Shah YT, Carr NL (1984) Hydrodynamics and mass transfer in non-Newtonian solutions in a bubble column. AIChE J 30:213–220CrossRef
    25.Chisti MY, Moo-Young M (1988) Gas holdup in pneumatic reactors. Chem Eng J 38:149–152. doi:10.​1016/​0300-9467(88)80073-X CrossRef
    26.Kawahara A, Sadatomi M, Matsuyama F et al (2009) Prediction of micro-bubble dissolution characteristics in water and seawater. Exp Therm Fluid Sci 33:883–894. doi:10.​1016/​j.​expthermflusci.​2009.​03.​004 CrossRef
    27.Lewis WK, Whitman WG (1924) Principles of Gas Absorption. Ind Eng Chem 16:1215–1220. doi:10.​1021/​ie50180a002 CrossRef
    28.Soltanali S, Hagani ZS (2008) Modeling of air stripping from volatile organic compounds in biological treatment processes. Int J Environ Sci Technol 5:353–360. doi:10.​1007/​BF03326030 CrossRef
    29.Kirk TV, Szita N (2013) Oxygen transfer characteristics of miniaturized bioreactor systems. Biotechnol Bioeng 110:1005–1019. doi:10.​1002/​bit.​24824 CrossRef
    30.Peterat G, Schmolke H, Lorenz T et al (2014) Characterization of oxygen transfer in vertical microbubble columns for aerobic biotechnological processes: oxygen transfer in vertical microbubble columns. Biotechnol Bioeng. doi:10.​1002/​bit.​25243
    31.Smith JS, Burns LF, Valsaraj KT, Thibodeaux LJ (1996) Bubble column reactors for wastewater treatment. 2. The effect of sparger design on sublation column hydrodynamics in the homogeneous flow regime. Ind Eng Chem Res 35:1700–1710CrossRef
    32.Ramezani M, Mostoufi N, Mehrnia MR (2012) Improved modeling of bubble column reactors by considering the bubble size distribution. Ind Eng Chem Res 51:5705–5714. doi:10.​1021/​ie202914s CrossRef
    33.Deng Z, Wang T, Zhang N, Wang Z (2010) Gas holdup, bubble behavior and mass transfer in a 5 m high internal-loop airlift reactor with non-Newtonian fluid. Chem Eng J 160:729–737. doi:10.​1016/​j.​cej.​2010.​03.​078 CrossRef
    34.Chaudhari RV, Hofmann H (1994) Coalescence of gas bubbles in liquids. Rev Chem Eng. doi:10.​1515/​REVCE.​1994.​10.​2.​131
    35.M. Yoshimoto SS (2007) Gas-liquid interfacial area, bubble size and liquid-phase mass transfer coefficient in a three-phase external loop airlift bubble column. Chem Amp Biochem Eng Q Cabeqpbfhr 21:4
    36.Ryu HW, Chang YK, Kim SD (1993) Gas holdup and mass transfer characteristics of carboxymethyl cellulose solutions in a bubble column with a radial gas sparger. Bioprocess Eng 8:271–277. doi:10.​1007/​BF00369840 CrossRef
    37.Merchuk JC, Yona S, Siegel MH, Zvi AB (1990) On the first-order approximation to the response of dissolved oxygen electrodes for dynamic KLa estimation. Biotechnol Bioeng 35:1161–1163. doi:10.​1002/​bit.​260351113 CrossRef
  • 作者单位:Gossaye Tirunehe (1)
    B. Norddahl (1)

    1. Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Industrial Chemistry and Chemical Engineering
    Industrial and Production Engineering
    Waste Management and Waste Technology
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Food Science
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1615-7605
文摘
Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air–water and air–CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas–liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas–liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U G) range of 0.0004–0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K La) by a factor of 1.2–1.9 compared to the flat sheet membrane.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.