Quaternary Al-Cu-Mg-Si Q Phase: Sample Preparation, Heat Capacity Measurement and First-Principles Calculations
详细信息    查看全文
  • 作者:Andrea Löffler ; Ali Zendegani ; Joachim Gröbner…
  • 关键词:ab initio methods ; CALPHAD approach ; heat capacity ; quaternary ; thermodynamic assessment
  • 刊名:Journal of Phase Equilibria and Diffusion
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:37
  • 期:2
  • 页码:119-126
  • 全文大小:927 KB
  • 参考文献:1.D.J. Chakrabarti and D.E. Laughlin, Phase Relations and Precipitation in Al-Mg-Si Alloys with Cu Additions, Prog. Mater Sci., 2004, 49, p 389-410CrossRef
    2.S. Esmaeili, X. Wang, D.J. Lloyd, and W.J. Poole, On the Precipitation-Hardening Behavior of the Al-Mg-Si-Cu Alloy AA6111, Metall. Mater. Trans. A, 2003, 34(13), p 751-763CrossRef
    3.A. Biswas, D.J. Siegel, and D.N. Seidman, Compositional Evolution of Q-Phase Precipitates in an Aluminum Alloy, Acta Mater., 2014, 75, p 322-336CrossRef
    4.C.-A. Gandin, Modeling of Solidification, Grain Structures and Segregation in Metallic Alloys, Comptes Rendus Phys., 2010, 11, p 216-225ADS CrossRef
    5.L. Thuinet and H. Combeau, A New Model of Microsegregation for Macrosegregation Computation in Multicomponent Steels, Comput. Mater. Sci., 2009, 45, p 294-304, ibd. pp 285-293CrossRef
    6.T. Kraft, M. Rettenmayr, and H.E. Exner, An Extended Numerical Procedure for Predicting Microstructure and Microsegregation in Multicomponent Alloys, Model. Simul. Mater. Sci. Eng., 1996, 4, p 161-177ADS CrossRef
    7.M. Rappaz and M. Rettenmayr, Simulation of Solidification, Curr. Opin. Solid State Mater. Sci., 1998, 3, p 275-282ADS CrossRef
    8.A. Löffler, J. Gröbner, M. Hampl, H. Engelhardt, R. Schmid-Fetzer, and M. Rettenmayr, Solidifying Incongruently Melting Intermetallic Phases as Bulk Single Phases Using the Example of Al2Cu and Q-Phase in the Al-Mg-Cu-Si System, J. Alloys Compd., 2012, 515, p 123-127CrossRef
    9.C. Wolverton, Crystal Structure and Stability of Complex Precipitate Phases in Al-Cu-Mg-(Si) and Al-Mg-Zn Alloys, Acta Mater., 2001, 49, p 3129-3142CrossRef
    10.H.N. Thi, B. Drevet, J.M. Debierre, D. Camel, Y. Dabo, and B. Billia, Preparation of the Initial Solid-Liquid Interface and Melt in Directional Solidification, J. Cryst. Growth, 2003, 253, p 539-548ADS CrossRef
    11.A. Löffler, K. Reuther, H. Engelhardt, D.M. Liu, and M. Rettenmayr, Resolidification of the Mushy Zone of Multiphase and Multicomponent Alloys in a Temperature Gradient—Experiments and Modeling, Acta Mater., 2015, 91, p p34-p40CrossRef
    12.M. Buchmann and M. Rettenmayr, Microstructure Evolution During Melting and Resolidification in a Temperature Gradient, J. Cryst. Growth, 2005, 284, p 544-553ADS CrossRef
    13.D. Liu, Y. Su, X. Li, L. Luo, J. Guo, and H. Fu, Influence of Thermal Stabilization on the Solute Concentration of the Melt in Directional Solidification, J. Cryst. Growth, 2010, 312, p 3658-3664ADS CrossRef
    14.G. Kresse and J. Hafner, Ab Initio Molecular Dynamics for Liquid Metals, Phys. Rev. B, 1993, 47, p 558-561ADS CrossRef
    15.G. Kresse and J. Furthmüller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, Comput. Mater. Sci., 1996, 6, p 15-50CrossRef
    16.G. Kresse and J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B, 1996, 54, p 11169-11186ADS CrossRef
    17.J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77, p 3865-3868ADS CrossRef
    18.P.E. Blöchl, Projector Augmented-Wave Method, Phys. Rev. B, 1994, 50, p 17953-17979ADS CrossRef
    19.H.J. Monkhorst and J.D. Pack, Special Points for Brillouin-Zone Integrations, Phys. Rev. B, 1976, 13, p 5188-5192ADS CrossRef MathSciNet
    20.L. Arnberg, B. Aurivillius, E. Wahlström, G. Malmros, J. Sjöblom, T.G. Strand, and V.F. Sukhoverkhov, The Crystal Structure of Al(x)Cu2 Mg(12-x)Si7 (h-AlCuMgSi), Acta Chem. Scand., 1980, 34a, p 1-5CrossRef
    21.B. Grabowski, T. Hickel, and J. Neugebauer, Ab Initio Study of the Thermodynamic Properties of Nonmagnetic Elementary fcc Metals: Exchange-Correlation-Related Error Bars and Chemical Trends, Phys. Rev. B, 2007, 76, p 024309ADS CrossRef
    22.N.D. Mermin, Thermal Properties of the Inhomogeneous Electron Gas, Phys. Rev., 1965, 137, p A1441ADS CrossRef MathSciNet
    23.B. Sundman, B. Jansson, and J.-O. Andersson, The Thermocalc Database System, CALPHAD, 1985, 9, p 153-190CrossRef
    24.T. Hickel, B. Grabowski, F. Körmann, and J. Neugebauer, Advancing Density Functional Theory to Finite Temperatures: Methods and Applications in Steel Design, J. Phys.: Condens. Matter, 2012, 24, p 053202ADS
    25.A. Glensk, B. Grabowski, T. Hickel, and J. Neugebauer, Understanding Anharmonicity in fcc Materials: From its Origin to Ab Initio Strategies Beyond the Quasiharmonic Approximation, Phys. Rev. Lett., 2015, 114, p 195901ADS CrossRef
    26.A. Glensk, B. Grabowski, T. Hickel, J. Neugebauer, in preparation.
    27.A. Zendegani, F. Körmann, T. Hickel, B. Hallstedt, J. Neugebauer, in preparation.
    28.M. Schick, B. Hallstedt, A. Glensk, B. Grabowski, T. Hickel, J. Gröbner, M. Hampl, J. Neugebauer, and R. Schmid-Fetzer, Assessment of the Binary Mg-Si Phase Diagram, CALPHAD, 2012, 37, p 77-86CrossRef
    29.C. Ravi and C. Wolverton, First-Principles Study of Crystal Structure and Stability of Al-Mg-Si-(Cu) Precipitates, Acta Mater., 2004, 52, p 4213-4227CrossRef
    30.C. Ravi, C. Wolverton, Comparison of thermodynamic databases for 3xx and 6xxx aluminum alloys. Metall. Mater. Trans.A 2005, 36(8), p 2013-2023
    31.K. Chang, S. Liu, D. Zhao, Y. Du, L. Zhou, and L. Chen, Thermodynamic Description of the Al-Cu-Mg-Mn-Si Quinary System and Its Application to Solidification Simulation, Thermochim. Acta, 2011, 512, p 258-267CrossRef
  • 作者单位:Andrea Löffler (1)
    Ali Zendegani (2)
    Joachim Gröbner (3)
    Milan Hampl (3)
    Rainer Schmid-Fetzer (3)
    Hannes Engelhardt (1)
    Markus Rettenmayr (1)
    Fritz Körmann (2)
    Tilmann Hickel (2)
    Jörg Neugebauer (2)

    1. Otto Schott Institute of Materials Research, Friedrich Schiller University, Jena, Germany
    2. Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
    3. Institute of Metallurgy, Clausthal University of Technology, Clausthal-Zellerfeld, Germany
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Crystallography
    Thermodynamics
    Materials Science
    Engineering Thermodynamics and Transport Phenomena
    Ceramics,Glass,Composites,Natural Materials
    Metallic Materials
  • 出版者:Springer Boston
  • ISSN:1863-7345
文摘
The quaternary Q phase is an important precipitate phase in the Al-Cu-Mg-Si alloy system and its accurate thermodynamic description is crucial for further tailoring this material class for light-weight structural applications. In order to achieve an improved thermochemical parameter set of this phase, we used a combination of experimental measurements and first-principles calculations, which was focussed on the heat capacity. Its accurate experimental determination required the preparation of pure samples of Q phase and sophisticated calorimetric measurements. On the theoretical side, a simultaneous treatment of lattice vibrations within the quasiharmonic approximation, electronic excitations, and configuration entropy within the compound energy formalism were required to achieve a complete description of the heat capacity. The evaluation demonstrates the high predictive power of the first-principles as well as the Calphad modeling.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.