Major Autonomic Neuroregulatory Pathways Underlying Short- and Long-Term Control of Cardiovascular Function
详细信息    查看全文
  • 作者:Ibrahim M. Salman
  • 关键词:Blood pressure ; Sympathetic nerve activity ; Baroreflex ; Cardiopulmonary reflex ; Chemoreflex ; Stress pathways
  • 刊名:Current Hypertension Reports
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:18
  • 期:3
  • 全文大小:2,926 KB
  • 参考文献:1.Loewy AD, Spyer KM. Central regulation of autonomic functions. USA: Oxford University Press; 1990.
    2.Thomas GD. Neural control of the circulation. Adv Physiol Educ. 2011;35(1):28–32. doi:10.​1152/​advan.​00114.​2010 .PubMed CrossRef
    3.Waugh A, Grant A. Ross & Wilson anatomy and physiology in health and illness. UK: Elsevier Health Sciences; 2010.
    4.Levy MN. Neural and reflex control of the circulation. In: Garfein O, editor. Current Concepts in cardiovascular physiology. Elsevier Science. 2012. p. 145.
    5.Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7(5):335–46. doi:10.​1038/​nrn1902 .PubMed CrossRef
    6.Jones J, Natarajan A, Jose P. Cardiovascular and autonomic influences on blood pressure. In: Portman R, Sorof J, Ingelfinger J, editors. Pediatric hypertension. Clinical hypertension and vascular diseases: Humana Press. 2004. p. 23–43.
    7.Crick SJ, Wharton J, Sheppard MN, Royston D, Yacoub MH, Anderson RH, et al. Innervation of the human cardiac conduction system. A quantitative immunohistochemical and histochemical study. Circulation. 1994;89(4):1697–708.PubMed CrossRef
    8.Ito M, Zipes DP. Efferent sympathetic and vagal innervation of the canine right ventricle. Circulation. 1994;90(3):1459–68.PubMed CrossRef
    9.Kawano H, Okada R, Yano K. Histological study on the distribution of autonomic nerves in the human heart. Heart Vessel. 2003;18(1):32–9. doi:10.​1007/​s003800300005 .CrossRef
    10.•
Hasan W. Autonomic cardiac innervation: development and adult plasticity. Organogenesis. 2013;9(3):176–93. doi:10.​4161/​org.​24892 . A focused review on postganglionic ANS neurons, which demonstrates developmental programs governing autonomic nerve differentiation, survival and nerve patterning in cardiac physiology and pathology and that a crosstalk between both limbs of the autonomic nervous system is critical for maintenance of normal cardiac rhythm and function. PubMedCentral PubMed CrossRef
11.Kimura K, Ieda M, Fukuda K. Development, maturation, and transdifferentiation of cardiac sympathetic nerves. Circ Res. 2012;110(2):325–36. doi:10.​1161/​circresaha.​111.​257253 .PubMed CrossRef
12.Dzimiri N. Receptor crosstalk. Implications for cardiovascular function, disease and therapy. Eur J Biochem / FEBS. 2002;269(19):4713–30.CrossRef
13.Gray AL, Johnson TA, Ardell JL, Massari VJ. Parasympathetic control of the heart. II. A novel interganglionic intrinsic cardiac circuit mediates neural control of heart rate. J Appl Physiol (Bethesda, Md: 1985). 2004;96(6):2273–8. doi:10.​1152/​japplphysiol.​00616.​2003 .CrossRef
14.Johnson TA, Gray AL, Lauenstein JM, Newton SS, Massari VJ. Parasympathetic control of the heart. I. An interventriculo-septal ganglion is the major source of the vagal intracardiac innervation of the ventricles. J Appl Physiol (Bethesda, Md: 1985). 2004;96(6):2265–72. doi:10.​1152/​japplphysiol.​00620.​2003 .CrossRef
15.Ardell JL, Randall WC, Cannon WJ, Schmacht DC, Tasdemiroglu E. Differential sympathetic regulation of automatic, conductile, and contractile tissue in dog heart. Am J Physiol. 1988;255(5 Pt 2):H1050–9.PubMed
16.Hirakawa N, Morimoto M, Totoki T. Sympathetic innervation of the young canine heart using antero- and retrograde axonal tracer methods. Brain Res Bull. 1993;31(6):673–80.PubMed CrossRef
17.Crick SJ, Sheppard MN, Ho SY, Anderson RH. Localisation and quantitation of autonomic innervation in the porcine heart I: conduction system. J Anat. 1999;195(Pt 3):341–57.PubMedCentral PubMed CrossRef
18.Furukawa Y, Narita M, Takei M, Kobayashi O, Haniuda M, Chiba S. Differential intracardiac sympathetic and parasympathetic innervation to the SA and AV nodes in anesthetized dog hearts. Jpn J Pharmacol. 1991;55(3):381–90.PubMed CrossRef
19.Furukawa Y, Wallick DW, Martin PJ, Levy MN. Chronotropic and dromotropic responses to stimulation of intracardiac sympathetic nerves to sinoatrial or atrioventricular nodal region in anesthetized dogs. Circ Res. 1990;66(5):1391–9.PubMed CrossRef
20.Gatti PJ, Johnson TA, Massari VJ. Can neurons in the nucleus ambiguus selectively regulate cardiac rate and atrio-ventricular conduction? J Auton Nerv Syst. 1996;57(1–2):123–7.PubMed CrossRef
21.Schauerte P, Mischke K, Plisiene J, Waldmann M, Zarse M, Stellbrink C, et al. Catheter stimulation of cardiac parasympathetic nerves in humans: a novel approach to the cardiac autonomic nervous system. Circulation. 2001;104(20):2430–5.PubMed CrossRef
22.Stramba-Badiale M, Vanoli E, De Ferrari GM, Cerati D, Foreman RD, Schwartz PJ. Sympathetic-parasympathetic interaction and accentuated antagonism in conscious dogs. Am J Physiol. 1991;260(2 Pt 2):H335–40.PubMed
23.Uijtdehaage SH, Thayer JF. Accentuated antagonism in the control of human heart rate. Clin Auton Res. 2000;10(3):107–10.PubMed CrossRef
24.Kawada T, Sugimachi M, Shishido T, Miyano H, Sato T, Yoshimura R, et al. Simultaneous identification of static and dynamic vagosympathetic interactions in regulating heart rate. Am J Physiol. 1999;276(3 Pt 2):R782–9.PubMed
25.Bevan JA, Su C. Distribution theory of resistance of neurogenic vasoconstriction to alpha-receptor blockade in the rabbit. Circ Res. 1971;28(2):179–87.PubMed CrossRef
26.Nilsson H, Goldstein M, Nilsson O. Adrenergic innervation and neurogenic response in large and small arteries and veins from the rat. Acta Physiol Scand. 1986;126(1):121–33. doi:10.​1111/​j.​1748-1716.​1986.​tb07795.​x .PubMed CrossRef
27.Mitchell RN, Libby P. Vascular remodeling in transplant vasculopathy. Circ Res. 2007;100(7):967–78. doi:10.​1161/​01.​res.​0000261982.​76892.​09 .PubMed CrossRef
28.Guimarães S, Moura D. Vascular adrenoceptors: an update. Pharmacol Rev. 2001;53(2):319–56.PubMed
29.Sweeney HL, Bowman BF, Stull JT. Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol. 1993;264(5 Pt 1):C1085–95.PubMed
30.Cotecchia S, Kobilka BK, Daniel KW, Nolan RD, Lapetina EY, Caron MG, et al. Multiple second messenger pathways of alpha-adrenergic receptor subtypes expressed in eukaryotic cells. J Biol Chem. 1990;265(1):63–9.PubMed
31.Pablo Huidobro-Toro J, Veronica Donoso M. Sympathetic co-transmission: the coordinated action of ATP and noradrenaline and their modulation by neuropeptide Y in human vascular neuroeffector junctions. Eur J Pharmacol. 2004;500(1–3):27–35. doi:10.​1016/​j.​ejphar.​2004.​07.​008 .PubMed CrossRef
32.Gilbey MP. Sympathetic rhythms and nervous integration. Clin Exp Pharmacol Physiol. 2007;34(4):356–61. doi:10.​1111/​j.​1440-1681.​2007.​04587.​x .PubMed CrossRef
33.Jänig W, Habler HJ. Neurophysiological analysis of target-related sympathetic pathways-from animal to human: similarities and differences. Acta Physiol Scand. 2003;177(3):255–74. doi:10.​1046/​j.​1365-201X.​2003.​01088.​x .PubMed CrossRef
34.Cao WH, Morrison SF. Differential chemoreceptor reflex responses of adrenal preganglionic neurons. Am J Physiol Regul Integr Comp Physiol. 2001;281(6):R1825–32.PubMed
35.Morrison SF, Cao WH. Different adrenal sympathetic preganglionic neurons regulate epinephrine and norepinephrine secretion. Am J Physiol Regul Integr Comp Physiol. 2000;279(5):R1763–75.PubMed
36.Dampney RA, Coleman MJ, Fontes MA, Hirooka Y, Horiuchi J, Li YW, et al. Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol. 2002;29(4):261–8.PubMed CrossRef
37.Dorward PK, Burke SL, Janig W, Cassell J. Reflex responses to baroreceptor, chemoreceptor and nociceptor inputs in single renal sympathetic neurones in the rabbit and the effects of anaesthesia on them. J Auton Nerv Syst. 1987;18(1):39–54.PubMed CrossRef
38.Ootsuka Y, Rong W, Kishi E, Koganezawa T, Terui N. Rhythmic activities of the sympatho-excitatory neurons in the medulla of rabbits: neurons controlling cutaneous vasomotion. Auton Neurosci. 2002;101(1–2):48–59.PubMed CrossRef
39.Brown R, James C, Henderson LA, Macefield VG. Autonomic markers of emotional processing: skin sympathetic nerve activity in humans during exposure to emotionally charged images. Front Physiol. 2012;3:394. doi:10.​3389/​fphys.​2012.​00394 .PubMedCentral PubMed
40.Ichinose M, Saito M, Kondo N, Nishiyasu T. Time-dependent modulation of arterial baroreflex control of muscle sympathetic nerve activity during isometric exercise in humans. Am J Physiol Heart Circ Physiol. 2006;290(4):H1419–26. doi:10.​1152/​ajpheart.​00847.​2005 .PubMed CrossRef
41.DiBona GF, Jones SY. Effect of sodium intake on sympathetic and hemodynamic response to thermal receptor stimulation. Hypertension. 2003;41(2):261–5.PubMed CrossRef
42.Low DA, Keller DM, Wingo JE, Brothers RM, Crandall CG. Sympathetic nerve activity and whole body heat stress in humans. J Appl Physiol (Bethesda, Md: 1985). 2011;111(5):1329–34. doi:10.​1152/​japplphysiol.​00498.​2011 .CrossRef
43.DiBona GF, Sawin LL. Renal nerve activity in conscious rats during volume expansion and depletion. Am J Physiol. 1985;248(1 Pt 2):F15–23.PubMed
44.Silva AQ, Schreihofer AM. Altered sympathetic reflexes and vascular reactivity in rats after exposure to chronic intermittent hypoxia. J Physiol. 2011;589(6):1463–76. doi:10.​1113/​jphysiol.​2010.​200691 .PubMedCentral PubMed CrossRef
45.••
Ramchandra R, Hood SG, Watson AM, Allen AM, May CN. Central angiotensin type 1 receptor blockade decreases cardiac but not renal sympathetic nerve activity in heart failure. Hypertension. 2012;59(3):634–41. An exquisitely performed observational study which demonstrates, in a sheep animal model of heart failure, target specific differences in levels of efferent sympathetic activity to various vascular beds, suggestive of differential regulation of SNA to different target organs in disease conditions. PubMedCentral PubMed CrossRef
46.Turner MJ, Kawada T, Sugimachi M. Differential dynamic control of cardiac and splanchnic sympathetic nerve activity by the arterial baroreflex. Conf Proc Ann Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Conf. 2013;2013:3809–12. doi:10.​1109/​embc.​2013.​6610374 .
47.Yoshimoto M, Miki K, Fink GD, King A, Osborn JW. Chronic angiotensin II infusion causes differential responses in regional sympathetic nerve activity in rats. Hypertension. 2010;55(3):644–51. doi:10.​1161/​hypertensionaha.​109.​145110 .PubMedCentral PubMed CrossRef
48.Mueller PJ, Mischel NA, Scislo TJ. Differential activation of adrenal, renal, and lumbar sympathetic nerves following stimulation of the rostral ventrolateral medulla of the rat. Am J Physiol Regul Integr Comp Physiol. 2011;300(5):R1230–40. doi:10.​1152/​ajpregu.​00713.​2010 .PubMedCentral PubMed CrossRef
49.Park J, Campese VM, Nobakht N, Middlekauff HR. Differential distribution of muscle and skin sympathetic nerve activity in patients with end-stage renal disease. J Appl Physiol (Bethesda, Md: 1985). 2008;105(6):1873–6. doi:10.​1152/​japplphysiol.​90849.​2008 .CrossRef
50.Ramchandra R, Barrett CJ, Guild SJ, Malpas SC. Evidence of differential control of renal and lumbar sympathetic nerve activity in conscious rabbits. Am J Physiol Regul Integr Comp Physiol. 2006;290(3):20.
51.Yao Y, Hildreth CM, Farnham MM, Saha M, Sun QJ, Pilowsky PM, et al. The effect of losartan on differential reflex control of sympathetic nerve activity in chronic kidney disease. J Hypertens. 2015. doi:10.​1097/​hjh.​0000000000000535​ .
52.Reid IA. Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol. 1992;262:E763–78.PubMed
53.Brewster UC, Perazella MA. The renin-angiotensin-aldosterone system and the kidney: effects on kidney disease. Am J Med. 2004;116(4):263–72. doi:10.​1016/​j.​amjmed.​2003.​09.​034 .PubMed CrossRef
54.DiBona GF. Neural control of the kidney: functionally specific renal sympathetic nerve fibers. Am J Physiol Regul Integr Comp Physiol. 2000;279(5):R1517–24.PubMed
55.DiBona GF, Sawin LL. Reflex regulation of renal nerve activity in cardiac failure. Am J Physiol. 1994;266(1 Pt 2):R27–39.PubMed
56.Peti-Peterdi J, Harris RC. Macula densa sensing and signaling mechanisms of renin release. J Am Soc Nephrol. 2010;21(7):1093–6. doi:10.​1681/​asn.​2009070759 .PubMedCentral PubMed CrossRef
57.DiBona GF. Nervous kidney. Interaction between renal sympathetic nerves and the renin-angiotensin system in the control of renal function. Hypertension. 2000;36(6):1083–8.PubMed CrossRef
58.Krauhs JM. Structure of rat aortic baroreceptors and their relationship to connective tissue. J Neurocytol. 1979;8(4):401–14.PubMed CrossRef
59.Tu H, Zhang L, Tran TP, Muelleman RL, Li YL. Reduced expression and activation of voltage-gated sodium channels contributes to blunted baroreflex sensitivity in heart failure rats. J Neurosci Res. 2010;88(15):3337–49. doi:10.​1002/​jnr.​22483 .PubMedCentral PubMed CrossRef
60.Sun H, Li DP, Chen SR, Hittelman WN, Pan HL. Sensing of blood pressure increase by transient receptor potential vanilloid 1 receptors on baroreceptors. J Pharmacol Exp Ther. 2009;331(3):851–9. doi:10.​1124/​jpet.​109.​160473 .PubMedCentral PubMed CrossRef
61.Song X, Gao X, Guo D, Yu Q, Guo W, He C, et al. Expression of P2X(2) and P2X (3) receptors in the rat carotid sinus, aortic arch, vena cava, and heart, as well as petrosal and nodose ganglia. Purinergic Signal. 2012;8(1):15–22. doi:10.​1007/​s11302-011-9249-4 .PubMedCentral PubMed CrossRef
62.Andresen MC, Krauhs JM, Brown AM. Relationship of aortic wall and baroreceptor properties during development in normotensive and spontaneously hypertensive rats. Circ Res. 1978;43(5):728–38.PubMed CrossRef
63.Fan W, Andresen MC. Differential frequency-dependent reflex integration of myelinated and nonmyelinated rat aortic baroreceptors. Am J Physiol. 1998;275(2 Pt 2):H632–40.PubMed
64.Fan W, Schild JH, Andresen MC. Graded and dynamic reflex summation of myelinated and unmyelinated rat aortic baroreceptors. Am J Physiol. 1999;277(3 Pt 2):R748–56.PubMed
65.Kumada M, Terui N, Kuwaki T. Arterial baroreceptor reflex: its central and peripheral neural mechanisms. Prog Neurobiol. 1990;35(5):331–61.PubMed CrossRef
66.Easton J, Howe A. The distribution of thoracic glomus tissue (aortic bodies) in the rat. Cell Tissue Res. 1983;232(2):349–56.PubMed CrossRef
67.Ninomiya I, Nisimaru N, Irisawa H. Sympathetic nerve activity to the spleen, kidney, and heart in response to baroceptor input. Am J Physiol. 1971;221(5):1346–51.PubMed
68.Sapru HN, Gonzalez E, Krieger AJ. Aortic nerve stimulation in the rat: cardiovascular and respiratory responses. Brain Res Bull. 1981;6(5):393–8.PubMed CrossRef
69.Sapru HN, Krieger AJ. Carotid and aortic chemoreceptor function in the rat. J Appl Physiol. 1977;42(3):344–8.PubMed
70.Andresen MC, Doyle MW, Jin YH, Bailey TW. Cellular mechanisms of baroreceptor integration at the nucleus tractus solitarius. Ann N Y Acad Sci. 2001;940:132–41.PubMed CrossRef
71.Dampney RA. Functional organization of central pathways regulating the cardiovascular system. Physiol Rev. 1994;74(2):323–64.PubMed
72.Pilowsky PM, Goodchild AK. Baroreceptor reflex pathways and neurotransmitters: 10 years on. J Hypertens. 2002;20(9):1675–88.PubMed CrossRef
73.Mendelowitz D, Yang M, Andresen MC, Kunze DL. Localization and retention in vitro of fluorescently labeled aortic baroreceptor terminals on neurons from the nucleus tractus solitarius. Brain Res. 1992;581(2):339–43.PubMed CrossRef
74.Bailey TW, Hermes SM, Andresen MC, Aicher SA. Cranial visceral afferent pathways through the nucleus of the solitary tract to caudal ventrolateral medulla or paraventricular hypothalamus: target-specific synaptic reliability and convergence patterns. J Neurosci Off J Soc Neurosci. 2006;26(46):11893–902. doi:10.​1523/​jneurosci.​2044-06.​2006 .CrossRef
75.Kawabe T, Chitravanshi VC, Kawabe K, Sapru HN. Cardiovascular function of a glutamatergic projection from the hypothalamic paraventricular nucleus to the nucleus tractus solitarius in the rat. Neuroscience. 2008;153(3):605–17. doi:10.​1016/​j.​neuroscience.​2008.​02.​076 .PubMedCentral PubMed CrossRef
76.Potts JT, Paton JF, Mitchell JH, Garry MG, Kline G, Anguelov PT, et al. Contraction-sensitive skeletal muscle afferents inhibit arterial baroreceptor signalling in the nucleus of the solitary tract: role of intrinsic GABA interneurons. Neuroscience. 2003;119(1):201–14.PubMed CrossRef
77.Sun MK, Guyenet PG. Arterial baroreceptor and vagal inputs to sympathoexcitatory neurons in rat medulla. Am J Physiol. 1987;252(4 Pt 2):R699–709.PubMed
78.Vardhan A, Kachroo A, Sapru HN. Excitatory amino acid receptors in the nucleus tractus solitarius mediate the responses to the stimulation of cardio-pulmonary vagal afferent C fiber endings. Brain Res. 1993;618(1):23–31.PubMed CrossRef
79.Akemi Sato M, Vanderlei Menani J, Ubriaco Lopes O, Colombari E. Lesions of the commissural nucleus of the solitary tract reduce arterial pressure in spontaneously hypertensive rats. Hypertension. 2001;38(3 Pt 2):560–4.PubMed CrossRef
80.Biaggioni I, Whetsell WO, Jobe J, Nadeau JH. Baroreflex failure in a patient with central nervous system lesions involving the nucleus tractus solitarii. Hypertension. 1994;23(4):491–5.PubMed CrossRef
81.Leone C, Gordon FJ. Is L-glutamate a neurotransmitter of baroreceptor information in the nucleus of the tractus solitarius? J Pharmacol Exp Ther. 1989;250(3):953–62.PubMed
82.Talman WT, Perrone MH, Reis DJ. Evidence for L-glutamate as the neurotransmitter of baroreceptor afferent nerve fibers. Science (New York, NY). 1980;209(4458):813–5.CrossRef
83.Polson JW, Dampney RA, Boscan P, Pickering AE, Paton JF. Differential baroreflex control of sympathetic drive by angiotensin II in the nucleus tractus solitarii. Am J Physiol Regul Integr Comp Physiol. 2007;293(5):R1954–60. doi:10.​1152/​ajpregu.​00041.​2007 .PubMed CrossRef
84.Miyawaki T, Suzuki S, Minson J, Arnolda L, Chalmers J, Llewellyn-Smith I, et al. Role of AMPA/kainate receptors in transmission of the sympathetic baroreflex in rat CVLM. Am J Physiol. 1997;272(3 Pt 2):R800–12.PubMed
85.Bailey TW, Hermes SM, Whittier KL, Aicher SA, Andresen MC. A-type potassium channels differentially tune afferent pathways from rat solitary tract nucleus to caudal ventrolateral medulla or paraventricular hypothalamus. J Physiol. 2007;582(Pt 2):613–28. doi:10.​1113/​jphysiol.​2007.​132365 .PubMedCentral PubMed CrossRef
86.Schreihofer AM, Guyenet PG. The baroreflex and beyond: control of sympathetic vasomotor tone by GABAergic neurons in the ventrolateral medulla. Clin Exp Pharmacol Physiol. 2002;29(5–6):514–21.PubMed CrossRef
87.Cravo SL, Morrison SF. The caudal ventrolateral medulla is a source of tonic sympathoinhibition. Brain Res. 1993;621(1):133–6.PubMed CrossRef
88.Horiuchi J, Killinger S, Dampney RA. Contribution to sympathetic vasomotor tone of tonic glutamatergic inputs to neurons in the RVLM. Am J Physiol Regul Integr Comp Physiol. 2004;287(6):R1335–43. doi:10.​1152/​ajpregu.​00255.​2004 .PubMed CrossRef
89.Guyenet PG, Filtz TM, Donaldson SR. Role of excitatory amino acids in rat vagal and sympathetic baroreflexes. Brain Res. 1987;407(2):272–84.PubMed CrossRef
90.Agarwal SK, Gelsema AJ, Calaresu FR. Neurons in rostral VLM are inhibited by chemical stimulation of caudal VLM in rats. Am J Physiol. 1989;257(2 Pt 2):R265–70.PubMed
91.Sved AF, Ito S, Madden CJ. Baroreflex dependent and independent roles of the caudal ventrolateral medulla in cardiovascular regulation. Brain Res Bull. 2000;51(2):129–33.PubMed CrossRef
92.Jeske I, Reis DJ, Milner TA. Neurons in the barosensory area of the caudal ventrolateral medulla project monosynaptically on to sympathoexcitatory bulbospinal neurons in the rostral ventrolateral medulla. Neuroscience. 1995;65(2):343–53.PubMed CrossRef
93.Lipski J, Kanjhan R, Kruszewska B, Rong WF. Criteria for intracellular identification of pre-sympathetic neurons in the rostral ventrolateral medulla in the rat. Clin Exp Hypertens. 1995;17(1–2):51–65.PubMed CrossRef
94.Schreihofer AM, Guyenet PG. Identification of C1 presympathetic neurons in rat rostral ventrolateral medulla by juxtacellular labeling in vivo. J Comp Neurol. 1997;387(4):524–36.PubMed CrossRef
95.Verberne AJ, Stornetta RL, Guyenet PG. Properties of C1 and other ventrolateral medullary neurones with hypothalamic projections in the rat. J Physiol. 1999;517(Pt 2):477–94.PubMedCentral PubMed CrossRef
96.Sun MK, Guyenet PG. GABA-mediated baroreceptor inhibition of reticulospinal neurons. Am J Physiol. 1985;249(6 Pt 2):R672–80.PubMed
97.Dampney RA, Tagawa T, Horiuchi J, Potts PD, Fontes M, Polson JW. What drives the tonic activity of presympathetic neurons in the rostral ventrolateral medulla? Clin Exp Pharmacol Physiol. 2000;27(12):1049–53.PubMed CrossRef
98.Campos RR, McAllen RM. Cardiac sympathetic premotor neurons. Am J Physiol. 1997;272(2 Pt 2):R615–20.PubMed
99.McAllen RM, Dampney RA. Vasomotor neurons in the rostral ventrolateral medulla are organized topographically with respect to type of vascular bed but not body region. Neurosci Lett. 1990;110(1–2):91–6.PubMed CrossRef
100.McAllen RM, May CN, Shafton AD. Functional anatomy of sympathetic premotor cell groups in the medulla. Clin Exp Hypertens. 1995;17(1–2):209–21.PubMed CrossRef
101.Guyenet PG, Stornetta RL, Abbott SB, Depuy SD, Fortuna MG, Kanbar R. Central CO2 chemoreception and integrated neural mechanisms of cardiovascular and respiratory control. J Appl Physiol (Bethesda, Md: 1985). 2010;108(4):995–1002. doi:10.​1152/​japplphysiol.​00712.​2009 .CrossRef
102.Tagawa T, Dampney RA. AT(1) receptors mediate excitatory inputs to rostral ventrolateral medulla pressor neurons from hypothalamus. Hypertension. 1999;34(6):1301–7.PubMed CrossRef
103.Izzo PN, Deuchars J, Spyer KM. Localization of cardiac vagal preganglionic motoneurones in the rat: immunocytochemical evidence of synaptic inputs containing 5-hydroxytryptamine. J Comp Neurol. 1993;327(4):572–83.PubMed CrossRef
104.Nosaka S, Yamamoto T, Yasunaga K. Localization of vagal cardioinhibitory preganglionic neurons with rat brain stem. J Comp Neurol. 1979;186(1):79–92.PubMed CrossRef
105.Stuesse SL. Origins of cardiac vagal preganglionic fibers: a retrograde transport study. Brain Res. 1982;236(1):15–25.PubMed CrossRef
106.Neff RA, Mihalevich M, Mendelowitz D. Stimulation of NTS activates NMDA and non-NMDA receptors in rat cardiac vagal neurons in the nucleus ambiguus. Brain Res. 1998;792(2):277–82. doi:10.​1016/​S0006-8993(98)00149-8 .PubMed CrossRef
107.Wang J, Irnaten M, Neff RA, Venkatesan P, Evans C, Loewy AD, et al. Synaptic and neurotransmitter activation of cardiac vagal neurons in the nucleus ambiguus. Ann N Y Acad Sci. 2001;940:237–46.PubMed CrossRef
108.DiMicco JA, Gale K, Hamilton B, Gillis RA. GABA receptor control of parasympathetic outflow to heart: characterization and brainstem localization. Science (New York, NY). 1979;204(4397):1106–9.CrossRef
109.Charlton JD, Baertschi AJ. Responses of aortic baroreceptors to changes of aortic blood flow and pressure in rat. Am J Physiol. 1982;242(4):H520–5.PubMed
110.Mandoki JJ, Casa-Tirao B, Molina-Guarneros JA, Jimenez-Orozco FA, Garcia-Mondragon MJ, Maldonado-Espinoza A. Pulsatile diastolic increase and systolic decrease in arterial blood pressure: their mechanism of production and physiological role. Prog Biophys Mol Biol. 2013;112(3):55–7. doi:10.​1016/​j.​pbiomolbio.​2013.​05.​002 .PubMed CrossRef
111.Vasquez EC, Meyrelles SS, Mauad H, Cabral AM, et al. Neural reflex regulation of arterial pressure in pathophysiological conditions: interplay among the baroreflex, the cardiopulmonary reflexes and the chemoreflex. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica. 1997;30(4):521–32.
112.Kent BB, Drane JW, Blumenstein B, Manning JW. A mathematical model to assess changes in the baroreceptor reflex. Cardiology. 1972;57(5):295–310.PubMed CrossRef
113.Ma X, Abboud FM, Chapleau MW. Analysis of afferent, central, and efferent components of the baroreceptor reflex in mice. Am J Physiol Regul Integr Comp Physiol. 2002;283(5):R1033–40.PubMed CrossRef
114.••Salman IM. Current approaches to quantifying tonic and reflex autonomic outflows controlling cardiovascular function in humans and experimental animals. Curr Hypertens Rep. 2015;17(11):84. doi:10.​1007/​s11906-015-0597-2 . A recently published review which provides an overview of the methods and techniques used to assess tonic and reflex autonomic functions in humans and laboratory animals, emphasizing current advances available and providing a brief description of protocols and procedure limitations and usefulness for diagnostic purposes. PubMed CrossRef
115.Andresen MC. Short- and long-term determinants of baroreceptor function in aged normotensive and spontaneously hypertensive rats. Circ Res. 1984;54(6):750–9.PubMed CrossRef
116.Gonzalez ER, Krieger AJ, Sapru HN. Central resetting of baroreflex in the spontaneously hypertensive rat. Hypertension. 1983;5(3):346–52.PubMed CrossRef
117.Mccubbin JW, Green JH, Page IH. Baroceptor Function in Chronic Renal Hypertension. Circ Res. 1956;4(2):205–10. doi:10.​1161/​01.​res.​4.​2.​205 .PubMed CrossRef
118.Sapru HN, Wang SC. Modification of aortic barorecptor resetting in the spontaneously hypertensive rat. Am J Physiol. 1976;230(3):664–74.PubMed
119.Wallin BG, Sundlof G. A quantitative study of muscle nerve sympathetic activity in resting normotensive and hypertensive subjects. Hypertension. 1979;1(2):67–77.PubMed CrossRef
120.Krieger EM. Mechanisms of complete baroreceptor resetting in hypertension. Drugs. 1988;35 Suppl 6:98–103.PubMed CrossRef
121.Munch PA, Andresen MC, Brown AM. Rapid resetting of aortic baroreceptors in vitro. Am J Physiol. 1983;244(5):H672–80.PubMed
122.Hatton DC, Brooks V, Qi Y, McCarron DA. Cardiovascular response to stress: baroreflex resetting and hemodynamics. Am J Physiol. 1997;272(5 Pt 2):R1588–94.PubMed
123.Kanbar R, Orea V, Barres C, Julien C. Baroreflex control of renal sympathetic nerve activity during air-jet stress in rats. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R362–7. doi:10.​1152/​ajpregu.​00413.​2006 .PubMed CrossRef
124.Smith SA, Querry RG, Fadel PJ, Gallagher KM, Stromstad M, Ide K, et al. Partial blockade of skeletal muscle somatosensory afferents attenuates baroreflex resetting during exercise in humans. J Physiol. 2003;551(Pt 3):1013–21. doi:10.​1113/​jphysiol.​2003.​044925 .PubMedCentral PubMed CrossRef
125.Head GA, Burke SL. Renal and cardiac sympathetic baroreflexes in hypertensive rabbits. Clin Exp Pharmacol Physiol. 2001;28(12):972–5.PubMed CrossRef
126.Huber DA, Schreihofer AM. Attenuated baroreflex control of sympathetic nerve activity in obese Zucker rats by central mechanisms. J Physiol. 2010;588(Pt 9):1515–25.PubMedCentral PubMed CrossRef
127.Ligtenberg G, Blankestijn PJ, Oey PL, Klein IH, Dijkhorst-Oei LT, Boomsma F, et al. Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N Engl J Med. 1999;340(17):1321–8.PubMed CrossRef
128.Salman IM, Hildreth CM, Ameer OZ, Phillips JK. Differential contribution of afferent and central pathways to the development of baroreflex dysfunction in chronic kidney disease. Hypertension. 2014;63(4):804–10. doi:10.​1161/​hypertensionaha.​113.​02110 .PubMed CrossRef
129.Salman IM, Phillips JK, Ameer OZ, Hildreth CM. Abnormal central control underlies impaired baroreflex control of heart rate and sympathetic nerve activity in female Lewis Polycystic Kidney rats. J Hypertens. 2015;33(7):1418–28. doi:10.​1097/​hjh.​0000000000000572​ .PubMed CrossRef
130.Paton JF, Deuchars J, Ahmad Z, Wong LF, Murphy D, Kasparov S. Adenoviral vector demonstrates that angiotensin II-induced depression of the cardiac baroreflex is mediated by endothelial nitric oxide synthase in the nucleus tractus solitarii of the rat. J Physiol. 2001;531(Pt 2):445–58.PubMedCentral PubMed CrossRef
131.Brown AM, Saum WR, Tuley FH. A comparison of aortic baroreceptor discharge in normotensive and spontaneously hypertensive rats. Circ Res. 1976;39(4):488–96.PubMed CrossRef
132.Sapru H, Krieger A. Role of receptor elements in baroceptor resetting. Am J Physiol-Heart Circ Physiol. 1979;236(1):H174–H82.
133.Grassi G, Trevano FQ, Seravalle G, Scopelliti F, Mancia G. Baroreflex function in hypertension: consequences for antihypertensive therapy. Prog Cardiovasc Dis. 2006;48(6):407–15. doi:10.​1016/​j.​pcad.​2006.​03.​002 .PubMed CrossRef
134.Kashihara K. Roles of arterial baroreceptor reflex during bezold-jarisch reflex. Curr Cardiol Rev. 2009;5(4):263–7.PubMedCentral PubMed CrossRef
135.Mancia G, Grassi G, Ferrari A, Zanchetti A. Reflex cardiovascular regulation in humans. J Cardiovasc Pharmacol. 1985;7 Suppl 3:S152–9.PubMed CrossRef
136.Merrill DC, Segar JL, McWeeny OJ, Robillard JE. Sympathetic responses to cardiopulmonary vagal afferent stimulation during development. Am J Physiol. 1999;277(4 Pt 2):H1311–6.PubMed
137.Aviado DM, Guevara AD. The Bezold-Jarisch reflex. A historical perspective of cardiopulmonary reflexes. Ann N Y Acad Sci. 2001;940:48–58.PubMed CrossRef
138.••Hainsworth R. Cardiovascular control from cardiac and pulmonary vascular receptors. Exp Physiol. 2014;99(2):312–9. doi:10.​1113/​expphysiol.​2013.​072637 . An excellent review summarizing present knowledge of the function of the cardiopulmonary afferent nerves arising from the heart and the coronary and pulmonary arteries. PubMed CrossRef
139.Verberne AJ, Guyenet PG. Medullary pathway of the Bezold-Jarisch reflex in the rat. Am J Physiol. 1992;263(6 Pt 2):R1195–202.PubMed
140.Coote JH. A role for the paraventricular nucleus of the hypothalamus in the autonomic control of heart and kidney. Exp Physiol. 2005;90(2):169–73. doi:10.​1113/​expphysiol.​2004.​029041 .PubMed CrossRef
141.Lee TM, Kuo JS, Chai CY. Central integrating mechanism of the Bezold-Jarisch and baroceptor reflexes. Am J Physiol. 1972;222(3):713–20.PubMed
142.Su JD, Huang ZS, Wang SL, Lu J. Medullary mechanism of the inhibition on renal sympathetic efferent activities by stimulation of the cervical vagal afferent nerve in rabbits. Sheng li xue bao: Acta Physiologica Sinica. 1996;48(4):410–4.PubMed
143.Toader E, McAllen RM, Cividjian A, Woods RL, Quintin L. Effect of systemic B-type natriuretic peptide on cardiac vagal motoneuron activity. Am J Physiol Heart Circ Physiol. 2007;293(6):H3465–70. doi:10.​1152/​ajpheart.​00528.​2007 .PubMed CrossRef
144.Lovick TA, Coote JH. Effects of volume loading on paraventriculo-spinal neurones in the rat. J Auton Nerv Syst. 1988;25(2–3):135–40.PubMed CrossRef
145.Pyner S, Deering J, Coote JH. Right atrial stretch induces renal nerve inhibition and c-fos expression in parvocellular neurones of the paraventricular nucleus in rats. Exp Physiol. 2002;87(1):25–32.PubMed CrossRef
146.Yang Z, Wheatley M, Coote JH. Neuropeptides, amines and amino acids as mediators of the sympathetic effects of paraventricular nucleus activation in the rat. Exp Physiol. 2002;87(6):663–74.PubMed CrossRef
147.Yang Z, Coote JH. Role of GABA and NO in the paraventricular nucleus-mediated reflex inhibition of renal sympathetic nerve activity following stimulation of right atrial receptors in the rat. Exp Physiol. 2003;88(3):335–42.PubMed CrossRef
148.Yang Z, Bertram D, Coote JH. The role of glutamate and vasopressin in the excitation of RVL neurones by paraventricular neurones. Brain Res. 2001;908(1):99–103.PubMed CrossRef
149.Ledsome JR, Linden RJ. A reflex increase in heart rate from distension of the pulmonary-vein-atrial junctions. J Physiol. 1964;170:456–73.PubMedCentral PubMed CrossRef
150.Bainbridge FA. The influence of venous filling upon the rate of the heart. J Physiol. 1915;50(2):65–84.PubMedCentral PubMed CrossRef
151.Karim F, Kidd C, Malpus CM, Penna PE. The effects of stimulation of the left atrial receptors on sympathetic efferent nerve activity. J Physiol. 1972;227(1):243–60.PubMedCentral PubMed CrossRef
152.Furnival CM, Linden RJ, Snow HM. Reflex effects on the heart of stimulating left atrial receptors. J Physiol. 1971;218(2):447–63.PubMedCentral PubMed CrossRef
153.Deering J, Coote JH. Paraventricular neurones elicit a volume expansion-like change of activity in sympathetic nerves to the heart and kidney in the rabbit. Exp Physiol. 2000;85(2):177–86.PubMed CrossRef
154.Carswell F, Hainsworth R, Ledsome JR. The effects of distension of the pulmonary vein-atrial junctions upon peripheral vascular resistance. J Physiol. 1970;207(1):1–14.PubMedCentral PubMed CrossRef
155.Bennett KL, Linden RJ, Mary DASG. The effect of stimulation of atrial receptors on the plasma concentration of vasopressin. Exp Physiol. 1983;68:579–89.CrossRef
156.Drinkhill MJ, Mary DA. The effect of stimulation of the atrial receptors on plasma cortisol level in the dog. J Physiol. 1989;413:299–313.PubMedCentral PubMed CrossRef
157.Drinkhill MJ, Hicks MN, Mary DA, Pearson MJ. The effect of stimulation of the atrial receptors on plasma renin activity in the dog. J Physiol. 1988;398:411–21.PubMedCentral PubMed CrossRef
158.Carswell F, Hainsworth R, Ledsome JR. The effects of left atrial distension upon urine flow from the isolated perfused kidney. Quart J Exp Physiol Cognate Med Sci. 1970;55(2):173–82.CrossRef
159.Campagna JA, Carter C. Clinical relevance of the Bezold-Jarisch reflex. Anesthesiology. 2003;98(5):1250–60.PubMed CrossRef
160.Chapleau MW, Sabharwal R. Methods of assessing vagus nerve activity and reflexes. Heart Fail Rev. 2011;16(2):109–27. doi:10.​1007/​s10741-010-9174-6 .PubMedCentral PubMed CrossRef
161.Kaufman MP, Baker DG, Coleridge HM, Coleridge JC. Stimulation by bradykinin of afferent vagal C-fibers with chemosensitive endings in the heart and aorta of the dog. Circ Res. 1980;46(4):476–84.PubMed CrossRef
162.Schultz HD. Cardiac vagal chemosensory afferents. Function in pathophysiological states. Ann N Y Acad Sci. 2001;940:59–73.PubMed CrossRef
163.Asanoi H. Application of microneurography to circulatory disorders. Brain and nerve =. Shinkei kenkyu no shinpo. 2009;61(3):270–6.PubMed
164.Ashton JH, Cassidy SS. Reflex depression of cardiovascular function during lung inflation. J Appl Physiol (Bethesda, Md: 1985). 1985;58(1):137–45.
165.Hayano J, Yasuma F, Okada A, Mukai S, Fujinami T. Respiratory sinus arrhythmia. A phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation. 1996;94(4):842–7.PubMed CrossRef
166.Shepherd JT. The lungs as receptor sites for cardiovascular regulation. Circulation. 1981;63(1):1–10.PubMed CrossRef
167.Braga VA, Soriano RN, Machado BH. Sympathoexcitatory response to peripheral chemoreflex activation is enhanced in juvenile rats exposed to chronic intermittent hypoxia. Exp Physiol. 2006;91(6):1025–31. doi:10.​1113/​expphysiol.​2006.​034868 .PubMed CrossRef
168.•Wenker IC, Sobrinho CR, Takakura AC, Mulkey DK, Moreira TS. P2Y1 receptors expressed by C1 neurons determine peripheral chemoreceptor modulation of breathing, sympathetic activity, and blood pressure. Hypertension. 2013;62(2):263–73. doi:10.​1161/​hypertensionaha.​113.​01487 . An interesting observational study which identifies, in an in vivo anesthetized rat model, P2Y1 receptors within C1 neurons of the RVLM as key determinants of peripheral chemoreceptor regulation of breathing, sympathetic nerve activity and blood pressure.
169.Marshall JM. Peripheral chemoreceptors and cardiovascular regulation. Physiol Rev. 1994;74(3):543–94.PubMed
170.Gonzalez C, Almaraz L, Obeso A, Rigual R. Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev. 1994;74(4):829–98.PubMed
171.Timmers HJ, Wieling W, Karemaker JM, Lenders JW. Denervation of carotid baro- and chemoreceptors in humans. J Physiol. 2003;553(Pt 1):3–11. doi:10.​1113/​jphysiol.​2003.​052415 .PubMedCentral PubMed CrossRef
172.de Burgh DM, Scott MJ. An analysis of the primary cardiovascular reflex effects of stimulation of the carotid body chemoreceptors in the dog. J Physiol. 1962;162:555–73.CrossRef
173.Paton JF, Deuchars J, Li YW, Kasparov S. Properties of solitary tract neurones responding to peripheral arterial chemoreceptors. Neuroscience. 2001;105(1):231–48.PubMed CrossRef
174.Aicher SA, Saravay RH, Cravo S, Jeske I, Morrison SF, Reis DJ, et al. Monosynaptic projections from the nucleus tractus solitarii to C1 adrenergic neurons in the rostral ventrolateral medulla: comparison with input from the caudal ventrolateral medulla. J Comp Neurol. 1996;373(1):62–75. doi:10.​1002/​(SICI)1096-9861(19960909)373:​1<62:​:​AID-CNE6>3.​0.​CO;2-B .PubMed CrossRef
175.Callera JC, Bonagamba LG, Nosjean A, Laguzzi R, Machado BH. Activation of GABAA but not GABAB receptors in the NTS blocked bradycardia of chemoreflex in awake rats. Am J Physiol. 1999;276(6 Pt 2):H1902–10.PubMed
176.Guyenet PG, Koshiya N. Working model of the sympathetic chemoreflex in rats. Clin Exp Hypertens. 1995;17(1–2):167–79.PubMed CrossRef
177.Koshiya N, Huangfu D, Guyenet PG. Ventrolateral medulla and sympathetic chemoreflex in the rat. Brain Res. 1993;609(1–2):174–84.PubMed CrossRef
178.Machado BH, Bonagamba LG. Antagonism of glutamate receptors in the intermediate and caudal NTS of awake rats produced no changes in the hypertensive response to chemoreflex activation. Auton Neurosci. 2005;117(1):25–32. doi:10.​1016/​j.​autneu.​2004.​10.​004 .PubMed CrossRef
179.Haibara AS, Colombari E, Chianca Jr DA, Bonagamba LG, Machado BH. NMDA receptors in NTS are involved in bradycardic but not in pressor response of chemoreflex. Am J Physiol. 1995;269(4 Pt 2):H1421–7.PubMed
180.Callera JC, Sevoz C, Laguzzi R, Machado BH. Microinjection of a serotonin3 receptor agonist into the NTS of unanesthetized rats inhibits the bradycardia evoked by activation of the baro- and chemoreflexes. J Auton Nerv Syst. 1997;63(3):127–36.PubMed CrossRef
181.Callera JC, Bonagamba LG, Nosjean A, Laguzzi R, Machado BH. Activation of GABA receptors in the NTS of awake rats reduces the gain of baroreflex bradycardia. Auton Neurosci. 2000;84(1–2):58–67. doi:10.​1016/​s1566-0702(00)00184-3 .PubMed CrossRef
182.•Guyenet PG, Bayliss DA, Stornetta RL, Fortuna MG, Abbott SB, DePuy SD. Retrotrapezoid nucleus, respiratory chemosensitivity and breathing automaticity. Respir Physiol Neurobiol. 2009;168(1–2):59–68. doi:10.​1016/​j.​resp.​2009.​02.​001 . This review summarizes evidence suggesting that neurons within the retrotrapezoid nucleus in the pontomedullary region of the central network innervate the entire ventral respiratory column and control both inspiration and expiration. PubMedCentral PubMed CrossRef
183.Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, et al. Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci. 2004;7(12):1360–9. doi:10.​1038/​nn1357 .PubMed CrossRef
184.Richerson GB, Wang W, Hodges MR, Dohle CI, Diez-Sampedro A. Homing in on the specific phenotype(s) of central respiratory chemoreceptors. Exp Physiol. 2005;90(3):259–66. doi:10.​1113/​expphysiol.​2005.​029843 . discussion 66–9.PubMed CrossRef
185.Sun Q, Goodchild AK, Pilowsky PM. Firing patterns of pre-Botzinger and Botzinger neurons during hypocapnia in the adult rat. Brain Res. 2001;903(1–2):198–206.PubMed CrossRef
186.Huang J, Lusina S, Xie T, Ji E, Xiang S, Liu Y, et al. Sympathetic response to chemostimulation in conscious rats exposed to chronic intermittent hypoxia. Respir Physiol Neurobiol. 2009;166(2):102–6. doi:10.​1016/​j.​resp.​2009.​02.​010 .PubMed CrossRef
187.Somers VK, Mark AL, Abboud FM. Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J Clin Invest. 1991;87(6):1953–7. doi:10.​1172/​jci115221 .PubMedCentral PubMed CrossRef
188.Guyenet P, Koshiya N. Respiratory-sympathetic integration in the medulla oblongata. In: Kunos G, Ciriello J, editors. Central neural mechanisms in cardiovascular regulation. Boston: Birkhäuser; 1992. p. 226–47.CrossRef
189.Millhorn DE. Neural respiratory and circulatory interaction during chemoreceptor stimulation and cooling of ventral medulla in cats. J Physiol. 1986;370:217–31.PubMedCentral PubMed CrossRef
190.Moreira TS, Takakura AC, Colombari E, Guyenet PG. Central chemoreceptors and sympathetic vasomotor outflow. J Physiol. 2006;577(Pt 1):369–86. doi:10.​1113/​jphysiol.​2006.​115600 .PubMedCentral PubMed CrossRef
191.Guyenet PG, Darnall RA, Riley TA. Rostral ventrolateral medulla and sympathorespiratory integration in rats. Am J Physiol. 1990;259(5 Pt 2):R1063–74.PubMed
192.Miyawaki T, Pilowsky P, Sun QJ, Minson J, Suzuki S, Arnolda L, et al. Central inspiration increases barosensitivity of neurons in rat rostral ventrolateral medulla. Am J Physiol. 1995;268(4 Pt 2):R909–18.PubMed
193.DiMicco JA, Samuels BC, Zaretskaia MV, Zaretsky DV. The dorsomedial hypothalamus and the response to stress: part renaissance, part revolution. Pharmacol Biochem Behav. 2002;71(3):469–80.PubMed CrossRef
194.Fontes MA, Xavier CH, de Menezes RC, Dimicco JA. The dorsomedial hypothalamus and the central pathways involved in the cardiovascular response to emotional stress. Neuroscience. 2011;184:64–74. doi:10.​1016/​j.​neuroscience.​2011.​03.​018 .PubMed CrossRef
195.•Fontes MA, Xavier CH, Marins FR, Limborco-Filho M, Vaz GC, Muller-Ribeiro FC, et al. Emotional stress and sympathetic activity: contribution of dorsomedial hypothalamus to cardiac arrhythmias. Brain Res. 2014;1554:49–58. doi:10.​1016/​j.​brainres.​2014.​01.​043 . An excellent paper reviewing the descending pathways from the dorsomedial hypothalamus, a key brain region involved in the cardiovascular response to emotional stress. It also discusses the crosstalk relationship between mechanisms controling sympathetic output to the cardiovascular system and possible implications in cardiovascular disease.
196.Salman IM, Kandukuri DS, Harrison JL, Hildreth CM, Phillips JK. Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease. Front Physiol. 2015;6. doi:10.​3389/​fphys.​2015.​00218 .
197.Sevoz-Couche C, Brouillard C, Camus F, Laude D, De Boer SF, Becker C, et al. Involvement of the dorsomedial hypothalamus and the nucleus tractus solitarii in chronic cardiovascular changes associated with anxiety in rats. J Physiol. 2013;591(Pt 7):1871–87. doi:10.​1113/​jphysiol.​2012.​247791 .PubMedCentral PubMed CrossRef
198.Barton DA, Dawood T, Lambert EA, Esler MD, Haikerwal D, Brenchley C, et al. Sympathetic activity in major depressive disorder: identifying those at increased cardiac risk? J Hypertens. 2007;25(10):2117–24. doi:10.​1097/​HJH.​0b013e32829baae7​ .PubMed CrossRef
199.Kouidi E, Karagiannis V, Grekas D, Iakovides A, Kaprinis G, Tourkantonis A, et al. Depression, heart rate variability, and exercise training in dialysis patients. Eur J Cardiovasc Prev Rehabil Off J Eur Soc Cardiol Work Groups Epidemiol Prev Cardiac Rehabil Exerc Physiol. 2010;17(2):160–7. doi:10.​1097/​HJR.​0b013e32833188c4​ .
200.••Salman IM. Cardiovascular autonomic dysfunction in chronic kidney disease: a comprehensive review. Curr Hypertens Rep. 2015;17(8):59. doi:10.​1007/​s11906-015-0571-z . An extensive review which provides a mechanistic insight into the pathophysiology of impaired tonic and reflex autonomic control of the circulation that is associated with hypertension driven by chronic renal dysfunction.
201.LeDoux J. The amygdala. Curr Biol : CB. 2007;17(20):R868–74. doi:10.​1016/​j.​cub.​2007.​08.​005 .PubMed CrossRef
202.Soltis RP, Cook JC, Gregg AE, Stratton JM, Flickinger KA. EAA receptors in the dorsomedial hypothalamic area mediate the cardiovascular response to activation of the amygdala. Am J Physiol. 1998;275(2 Pt 2):R624–31.PubMed
203.Johnson PL, Shekhar A. Panic-prone state induced in rats with GABA dysfunction in the dorsomedial hypothalamus is mediated by NMDA receptors. J Neurosci Off J Soc Neurosci. 2006;26(26):7093–104. doi:10.​1523/​jneurosci.​0408-06.​2006 .CrossRef
204.Busnardo C, Tavares RF, Resstel LB, Elias LL, Correa FM. Paraventricular nucleus modulates autonomic and neuroendocrine responses to acute restraint stress in rats. Auton Neurosci. 2010;158(1–2):51–7. doi:10.​1016/​j.​autneu.​2010.​06.​003 .PubMed CrossRef
205.Fontes MA, Tagawa T, Polson JW, Cavanagh SJ, Dampney RA. Descending pathways mediating cardiovascular response from dorsomedial hypothalamic nucleus. Am J Physiol Heart Circ Physiol. 2001;280(6):H2891–901.PubMed
206.Samuels BC, Zaretsky DV, DiMicco JA. Tachycardia evoked by disinhibition of the dorsomedial hypothalamus in rats is mediated through medullary raphe. J Physiol. 2002;538(Pt 3):941–6.PubMedCentral PubMed CrossRef
207.Cullinan WE, Helmreich DL, Watson SJ. Fos expression in forebrain afferents to the hypothalamic paraventricular nucleus following swim stress. J Comp Neurol. 1996;368(1):88–99. doi:10.​1002/​(SICI)1096-9861(19960422)368:​1<88:​:​AID-CNE6>3.​0.​CO;2-G .PubMed CrossRef
208.Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10(6):397–409. doi:10.​1038/​nrn2647 .PubMedCentral PubMed CrossRef
209.Koegler-Muly SM, Owens MJ, Ervin GN, Kilts CD, Nemeroff CB. Potential corticotropin-releasing factor pathways in the rat brain as determined by bilateral electrolytic lesions of the central amygdaloid nucleus and the paraventricular nucleus of the hypothalamus. J Neuroendocrinol. 1993;5(1):95–8.PubMed CrossRef
210.Evanson NK, Van Hooren DC, Herman JP. GluR5-mediated glutamate signaling regulates hypothalamo-pituitary-adrenocortical stress responses at the paraventricular nucleus and median eminence. Psychoneuroendocrinology. 2009;34(9):1370–9. doi:10.​1016/​j.​psyneuen.​2009.​04.​011 .PubMedCentral PubMed CrossRef
211.Merchenthaler I, Hynes MA, Vigh S, Schally AV, Petrusz P. Corticotropin releasing factor (CRF): origin and course of afferent pathways to the median eminence (ME) of the rat hypothalamus. Neuroendocrinology. 1984;39(4):296–306.PubMed CrossRef
212.Bailey TW, Dimicco JA. Chemical stimulation of the dorsomedial hypothalamus elevates plasma ACTH in conscious rats. Am J Physiol Regul Integr Comp Physiol. 2001;280(1):R8–15.PubMed
213.Makara GB, Stark E, Kapocs G, Antoni FA. Long-term effects of hypothalamic paraventricular lesion on CRF content and stimulated ACTH secretion. Am J Physiol. 1986;250(3 Pt 1):E319–24.PubMed
214.Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 2006;8(4):383–95.PubMedCentral PubMed
215.Stotz-Potter EH, Willis LR, DiMicco JA. Muscimol acts in dorsomedial but not paraventricular hypothalamic nucleus to suppress cardiovascular effects of stress. J Neurosci Off J Soc Neurosci. 1996;16(3):1173–9.
216.Cao WH, Morrison SF. Disinhibition of rostral raphe pallidus neurons increases cardiac sympathetic nerve activity and heart rate. Brain Res. 2003;980(1):1–10.PubMed CrossRef
217.Zaretsky DV, Zaretskaia MV, Samuels BC, Cluxton LK, DiMicco JA. Microinjection of muscimol into raphe pallidus suppresses tachycardia associated with air stress in conscious rats. J Physiol. 2003;546(Pt 1):243–50.PubMedCentral PubMed CrossRef
218.Esler M, Jennings G, Lambert G. Measurement of overall and cardiac norepinephrine release into plasma during cognitive challenge. Psychoneuroendocrinology. 1989;14(6):477–81.PubMed CrossRef
219.Callister R, Suwarno NO, Seals DR. Sympathetic activity is influenced by task difficulty and stress perception during mental challenge in humans. J Physiol. 1992;454:373–87.PubMedCentral PubMed CrossRef
220.Kunos G, Varga K. The tachycardia associated with the defense reaction involves activation of both GABAA and GABAB receptors in the nucleus tractus solitarii. Clin Exp Hypertens. 1995;17(1–2):91–100.PubMed CrossRef
221.•Furlong TM, McDowall LM, Horiuchi J, Polson JW, Dampney RA. The effect of air puff stress on c-Fos expression in rat hypothalamus and brainstem: central circuitry mediating sympathoexcitation and baroreflex resetting. Eur J Neurosci. 2014. doi:10.​1111/​ejn.​12521 . Classical electrophysiological recording experiments which demonstrated that increased sympathetic activity during psychological stress is not primarily contributed to by RVLM sympathetic premotor neurons, and that neurons within the PVN, perifornical area and ventrolateral periaqueductal gray matter may drive the resetting of the baroreceptor-sympathetic reflex associated with psychological stress. PubMed
222.••Carrive P. Orexin, orexin receptor antagonists and central cardiovascular control. Front Neurosci. 2013;7:257. doi:10.​3389/​fnins.​2013.​00257 . A fascinating review discussing the role of orexin, a new and exciting neuropeptide originates from a group of neurons located in the dorsal hypothalamus, in not only the control of arousal and expression of motivated behavior but also in contributing to stress-driven hypertension. PubMedCentral PubMed CrossRef
223.Shahid IZ, Rahman AA, Pilowsky PM. Intrathecal orexin A increases sympathetic outflow and respiratory drive, enhances baroreflex sensitivity and blocks the somato-sympathetic reflex. Br J Pharmacol. 2011;162(4):961–73. doi:10.​1111/​j.​1476-5381.​2010.​01102.​x .PubMedCentral PubMed CrossRef
224.Shahid IZ, Rahman AA, Pilowsky PM. Orexin A in rat rostral ventrolateral medulla is pressor, sympatho-excitatory, increases barosensitivity and attenuates the somato-sympathetic reflex. Br J Pharmacol. 2012;165(7):2292–303. doi:10.​1111/​j.​1476-5381.​2011.​01694.​x .PubMedCentral PubMed CrossRef
  • 作者单位:Ibrahim M. Salman (1)

    1. Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
  • 刊物主题:Internal Medicine; Cardiology; Metabolic Diseases; Nephrology; Primary Care Medicine; General Practice / Family Medicine;
  • 出版者:Springer US
  • ISSN:1534-3111
  • 文摘
    Short-term and long-term blood pressure (BP) regulation and its maintenance at levels adequate to perfuse tissue organs involve an integrated action of multiple neural, cardiovascular, renal, endocrine and local tissue control systems. In the recent year, there has been a growing interest in the understanding of neural pathways key to BP control. For instance, through major advances in studies using both anesthetized and conscious animals, our knowledge of the essential neural mechanisms that subserve the baroreceptor, cardiopulmonary and chemoreceptor reflexes, and those evoked by the activation of stress pathways has dramatically increased. While the importance of these neural pathways in the maintenance of cardiovascular homeostasis is well established, the recognition of the central processing nuclei that integrate various afferent inputs to produce synchronous adjustments of autonomic outflows is still progressively expanding. Based on the literature provided thus far, the present review provides an overview in relation to the important neural determinants of BP control and later offers a concise description of major neuronal pathways that control autonomic outflows to the cardiovascular system in the short and long term. Keywords Blood pressure Sympathetic nerve activity Baroreflex Cardiopulmonary reflex Chemoreflex Stress pathways
    NGLC 2004-2010.National Geological Library of China All Rights Reserved.
    Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
    For exchange or info please contact us via email.