A New Fluorescence Sensor for Cerium (III) Ion Using Glycine Dithiocarbamate Capped Manganese Doped ZnS Quantum Dots
详细信息    查看全文
  • 作者:Mohammad Kazem Rofouei ; Narjes Tajarrod ; Majid Masteri-Farahani…
  • 关键词:Cerium (III) sensor ; Fluorescence quenching ; Nanosensor ; Quantum dots ; Glycine dithiocarbamate
  • 刊名:Journal of Fluorescence
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:25
  • 期:6
  • 页码:1855-1866
  • 全文大小:2,444 KB
  • 参考文献:1.Kuang H, Zhao Y, Ma W, Xu L, Wang L, Xu C (2011) Recent developments in analytical applications of quantum dots. Trends Anal Chem 30:1620-636CrossRef
    2.Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 40:7602-625CrossRef
    3.Rossetti R, Nakahara S, Brus LE (1983) Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J Chem Phys 79:1086-088CrossRef
    4.Callan JF, De Silva AP, Mulrooney RC, Mc Caughan B (2007) Luminescent sensing with quantum dots. J Fluoresc 3-:257-62
    5.Galian RE, Guardia M (2009) The use of quantum dots in organic chemistry. Trends Anal Chem 28:279-1CrossRef
    6.Freeman R, Willner I (2012) Optical molecular sensing with semiconductor quantum dots (QDs). Chem Soc Rev 41:4067-5CrossRef PubMed
    7.Thomas D, Lonappan L, Rajith L, Cyriac ST, Kumar KG (2013) Quantum Dots (QDs) Based Fluorescent Sensor for the Selective Determination of Nimesulide. J Fluoresc 3:473-78CrossRef
    8.Jian W, Zhuang J, Zhang D, Dai J, Yang W, Bai Y (2006) Synthesis of highly luminescent and photostable ZnS:Ag nanocrystals under microwave irradiation. Mater Chem Phys 99:494-CrossRef
    9.Labiadh H, Chaabane TB, Piatkowski D, Mackowski S, Lalevée J, Ghanbaja J et al (2013) Aqueous route to color-tunable Mn-doped ZnS quantum dots. Mater Chem Phys 140:674-82CrossRef
    10.Khosravi AA, Kundu M, Jatwa L, Deshpande SK, Bhagwat UA, Sastry M et al (1995) Green luminescence from copper doped zinc sulphide quantum particles. Appl Phys Lett 67:2702-704CrossRef
    11.Qu SC, Zhou WH, Liu FQ, Chen NF, Wang ZG, Pan HY et al (2002) Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in a water/methanol solution. Appl Phys Lett 80:3605-CrossRef
    12.Suyver JF, Wuister SF, Kelly JJ, Meijerink A (2001) Synthesis and photoluminescence of nanocrystalline ZnS:Mn2+. Nano Lett 1:429-3CrossRef
    13.Ma X, Song J, Yu Z (2011) The light emission properties of ZnS:Mn nanoparticles. Thin Solid Films 519:5043-045CrossRef
    14.Segets D, Komada S, Butz B, Spiecker E, Mori Y, Peukert W (2013) Quantitative evaluation of size selective precipitation of Mn-doped ZnS quantum dots by size distributions calculated from UV/Vis absorbance spectra. J Nanoparticle Res 15:1-3
    15.Ali TA, Mohamed GG, Azzam EMS, Abd-elaal AA (2014) Thiol surfactant assembled on gold nanoparticles ion exchanger for screen-printed electrode fabrication Potentiometric determination of Ce(III) in environmental polluted samples. Sensors Actuators B Chem 191:192-03CrossRef
    16.Afkhami A, Madrakian T, Shirzadmehr A, Tabatabaee M, Bagheri H (2012) New Schiff base-carbon nanotube–nanosilica–ionic liquid as a high performance sensing material of a potentiometric sensor for nanomolar determination of cerium(III) ions. Sensors Actuators B Chem 174:237-4CrossRef
    17.Awual MR, Yaita T, Shiwaku H (2013) Design a novel optical adsorbent for simultaneous ultra-trace cerium (III) detection, sorption and recovery. Chem Eng J 228:327-5CrossRef
    18.Wang L, Yu Y, Huang X, Long Z, Cui D (2013) Toward greener comprehensive utilization of bastnaesite: Simultaneous recovery of cerium, fluorine, and thorium from bastnaesite leach liquor using HEH(EHP). Chem Eng J 215-16:162-67CrossRef
    19.Abhilash S, Sinha MK, Sinha BDP (2014) Extraction of lanthanum and cerium from Indian red mud. Int J Miner Process 127:70-3CrossRef
    20.Hirano S, Suzuki KT (1996) Exposure, metabolism, and toxicity of rare earths and related compounds. Environ Health Perspect 104:85-5PubMedCentral CrossRef PubMed
    21.Masi AN, Olsina RA (1993) Preconcentration and determination of Ce, La and Pr by X-ray fluorescence analysis, using Amberlite XAD resins loaded with 8-Quinolinol and 2-(2-(5 chloropyridylazo)-5-dimethylamino)-phenol. Talanta 40:931-34CrossRef PubMed
    22.Achilli M, Ciceri G, Ferraroli R, Heltai D, Martinotti W (1989) Determination of cerium, yttrium and thorium in environmental samples. Analyst 114:319-3CrossRef
    23.Ayranov M, Cobos J, Popa K, Rondinella VV (2009) Determination of REE, U, Th, Ba, and Zr in simulated hydrogeological leachates by ICP-AES after matrix solvent extraction. J Rare Earths 27:123-CrossRef
    24.Amin AS, Moustafa MM, Issa RM (1997) A rapid, selective and sensitive spectrophotometric method for the determination of Ce(III) using some bisazophenyl-β-diketone derivatives. Talanta 44:311-17CrossRef PubMed
    25.Zhang T, Lu J, Ma J, Qiang Z (2008) Fluorescence spectroscopic characterization of DOM fractions isolated from a filtered river water after ozonation and catalytic ozonation. Chemosphere 71:911-1CrossRef PubMed
    26.Meng JX, Wu HJ, Feng DX (2000) Fluorimetry determination of trace Ce3+ with EDTP. Spectrochim Acta A 56:1925-CrossRef
    27.Rounaghi G, Zadeh Kakhki RM, Sadeghian H (2011) A new cerium (III) ion selective electrode based on 2,9-dihydroxy-1,10-diphenoxy-4,7-dithi
  • 作者单位:Mohammad Kazem Rofouei (1)
    Narjes Tajarrod (1)
    Majid Masteri-Farahani (1)
    Reza Zadmard (2)

    1. Faculty of Chemistry, Kharazmi University, Tehran, Iran
    2. Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Biophysics and Biomedical Physics
    Biotechnology
    Biochemistry
    Analytical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-4994
文摘
A new fluorescence sensor for Ce3+ions is reported in this paper. This sensor is based on the fluorescence quenching of glycine dithiocarbamate (GDTC)-functionalized manganese doped ZnS quantum dots (QDs) in the presence of Ce3+ions. The synthesis of ultra-small GDTC-Mn:ZnS quantum dots (QDs) is based on the co-precipitation of nanoparticles in aqueous Solution. The nanoparticles are characterized with fluorescence spectroscopy, UV–vis absorption spectra, high-resolution transmission electron microscopy, X-ray power diffraction (XRD), and infrared spectroscopy. In the test carried out, it was found that the interaction between Ce3+ions and GDTC capped Mn:ZnS QDs quenches the original fluorescence of QDs according to the Stern-Volmer equation and the results show the existence of collisional quenching process. A linear relationship was observed between the extent of quenching and the concentration of Ce3+in the range of 2.0?×-0? to 3.2?×-0? mol.L?, with a detection limit of 2.29?×-0? mol.L?. The relative standard deviation of 1.61 % was obtained for five replicate measurements. The possible quenching mechanism was also examined by fluorescence and UV–vis absorption spectra. The interference of other cations was negligible on the quantitative determination of Ce3+. This method proved to be simple, sensitive, low cost, and also reliable for practical applications. Keywords Cerium (III) sensor Fluorescence quenching Nanosensor Quantum dots Glycine dithiocarbamate
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.