Interspecific Competition Models Derived from Competition Among Individuals
详细信息    查看全文
  • 作者:Masahiro Anazawa (1) anazawa@tohtech.ac.jp
  • 关键词:Interspecific competition models &#8211 ; First principles derivation &#8211 ; Site ; based framework &#8211 ; Resource partitioning &#8211 ; Aggregation of individuals
  • 刊名:Bulletin of Mathematical Biology
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:74
  • 期:7
  • 页码:1580-1605
  • 全文大小:847.6 KB
  • 参考文献:1. Anazawa, M. (2009). Bottom-up derivation of discrete-time population models with the Allee effect. Theor. Popul. Biol., 75, 56–67.
    2. Anazawa, M. (2010). The mechanistic basis of discrete-time population models: the role of resource partitioning and spatial aggregation. Theor. Popul. Biol., 77, 213–218.
    3. Anazawa, M. (2012). Bottom-up derivation of population models for competition involving multiple resources. Theor. Popul. Biol., 81, 158–167.
    4. Atkinson, W. D., & Shorrocks, B. (1981). Competition on a divided and ephemeral resource: a simulation model. J. Anim. Ecol., 461–471.
    5. Br盲nnstr枚m, 脜., & Sumpter, D. J. T. (2005a). Coupled map lattice approximations for spatially explicit individual-based models of ecology. Bull. Math. Biol., 67, 663–682.
    6. Br盲nnstr枚m, 脜., & Sumpter, D. J. T. (2005b). The role of competition and clustering in population dynamics. Proc. R. Soc. Lond. B, 272, 2065–2072.
    7. Br盲nnstr枚m, 脜., & Sumpter, D. J. T. (2006). Stochastic analogues of deterministic single-species population models. Theor. Popul. Biol., 69, 442–451.
    8. Chesson, P. (1998a). Making sense of spatial models in ecology. In J. Bascompte & R. V. Sole (Eds.), Modeling spatiotemporal dynamics in ecology (pp. 151–166). Berlin: Springer.
    9. Chesson, P. (1998b). Spatial scales in the study of reef fishes: a theoretical perspective. Aust. J. Ecol., 23, 209–215.
    10. Chesson, P., Donahue, M., Melbourne, B., & Sears, A. (2005). Scale transition theory for understanding mechanisms in metacommunities. In M. Holyoak, M. A. Leibold, & R. D. Holt (Eds.), Metacommunities: spatial dynamics and ecological communities (pp. 279–306). Chicago: The University of Chicago Press.
    11. Eskola, H. T. M., & Geritz, S. A. H. (2007). On the mechanistic derivation of various discrete-time population models. Bull. Math. Biol., 69, 329–346.
    12. Eskola, H. T. M., & Parvinen, K. (2007). On the mechanistic underpinning of discrete-time population models with Allee effect. Theor. Popul. Biol., 72, 41–51.
    13. Eskola, H. T. M., & Parvinen, K. (2010). The Allee effect in mechanistic models based on inter-individual interaction processes. Bull. Math. Biol., 72, 184–207.
    14. Fujii, K. (1965). A statistical model of the competition curve. Res. Popul. Ecol., 7, 118–125.
    15. Geritz, S. A. H., & Kisdi, E. (2004). On the mechanistic underpinning of discrete-time population models with complex dynamics. J. Theor. Biol., 228, 261–269.
    16. Gotzen, B., Liebscher, V., & Walcher, S. (2011). On a class of deterministic population models with stochastic foundation. Bull. Math. Biol., 73, 1559–1582.
    17. Grimm, V., & Railsback, S. F. (2005). Individual-based modeling and ecology. Princeton: Princeton University Press.
    18. Grimm, V., & Uchmański, J. (2002). Individual variability and population regulation: a model of the significance of within-generation density dependence. Oecologia, 131, 196–202.
    19. Gurney, W. S. C. (1998). Ecological dynamics. New York: Oxford University Press.
    20. Hartley, S., & Shorrocks, B. (2002). A general framework for the aggregation model of coexistence. J. Anim. Ecol., 71, 651–662.
    21. Hassell, M. P. (1975). Density-dependence in single-species populations. J. Anim. Ecol., 44, 283–295.
    22. Hassell, M. P., & Comins, H. N. (1976). Discrete time models for two-species competition. Theor. Popul. Biol., 9, 202–221.
    23. Hassell, M. P., & May, R. M. (1985). From individual behaviour to population dynamics. In R. M. Sibley & R. M. Smith (Eds.), Behavioral ecology: ecological consequences of adaptive behaviour (pp. 3–32). Oxford: Blackwell.
    24. Hofbauer, J., Hutson, V., & Jansen, W. (1987). Coexistence for systems governed by difference equations of Lotka-Volterra type. J. Math. Biol., 25, 553–570.
    25. Ishii, Y., & Shimada, M. (2008). Competitive exclusion between contest and scramble strategists in Callosobruchus seed–beetle modeling. Popul. Ecol., 50, 197–205.
    26. Jiang, H., & Rogers, T. D. (1987). The discrete dynamics of symmetric competition in the plane. J. Math. Biol., 25, 573–596.
    27. Johansson, A., & Sumpter, D. J. T. (2003). From local interactions to population dynamics in site-based models of ecology. Theor. Popul. Biol., 64, 497–517.
    28. Johst, K., Berryman, A., & Lima, M. (2008). From individual interactions to population dynamics: individual resource partitioning simulation exposes the cause of nonlinear intra-specific competition. Popul. Ecol., 50, 79–90.
    29. Łomnicki, A. (1988). Population ecology of individuals. Princeton: Princeton University Press.
    30. Łomnicki, A. (2009). Scramble and contest competition, unequal resource allocation, and resource monopolization as determinants of population dynamics. Evol. Ecol. Res., 11, 371–380.
    31. May, R. M. (1974). Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science, 186, 645–647.
    32. Nicholson, A. J. (1954). An outline of the dynamics of animal populations. Aust. J. Zool., 2, 9–65.
    33. Ricker, W. E. (1954). Stock and recruitment. J. Fish. Res. Board Can., 11, 559–623.
    34. Royama, T. (1992). Analytical population dynamics. London: Chapman & Hall.
    35. Seno, H. (2007). Mathematical biology: introduction to population dynamics modelling. Tokyo: Kyoritsu Shuppan (in Japanese).
    36. Shorrocks, B., Atkinson, W., & Charlesworth, P. (1979). Competition on a divided and ephemeral resource. J. Anim. Ecol., 899–908.
    37. Sumpter, D. J. T., & Broomhead, D. S. (2001). Relating individual behaviour to population dynamics. Proc. R. Soc. B, 268, 925–932.
    38. Sutherland, W. (1996). From individual behaviour to population ecology. London: Oxford University Press.
    39. Thanthianga, C., & Mitchell, R. (1987). Vibrations mediate prudent resource exploitation by competing larvae of the bruchid bean weevil callosobruchus maculatus. Entomol. Exp. Appl., 44, 15–21.
    40. Thieme, H. R. (2003). Mathematics in population biology. Princeton series in theoretical and computational biology. Princeton: Princeton University Press.
    41. Toquenaga, Y. (1993). Contest and scramble competitions in callosobruchus maculatus (coleoptera: Bruchidae) ii. larval competition and interference mechanisms. Res. Popul. Ecol., 35, 57–68.
    42. Toquenaga, Y., & Fujii, K. (1991). Contest and scramble competitions in callosobruchus maculatus (coleoptera: Bruchidae). Res. Popul. Ecol., 33, 199–211.
    43. Uchmański, J. (2000). Resource partitioning among competing individuals and population persistence: an individual-based model. Ecol. Model., 131, 21–32.
    44. Wells, H., Strauss, E. G., Rutter, M. A., & Wells, P. H. (1998). Mate location, population growth and species extinction. Biol. Conserv., 86, 317–324.
  • 作者单位:1. Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, 982-8577 Japan
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematical Biology
  • 出版者:Springer New York
  • ISSN:1522-9602
文摘
This paper demonstrates how discrete-time models describing population dynamics of two competing species can be derived in a bottom-up manner by considering competition for resources among individuals and the spatial distribution of individuals. The competition type of each species is assumed to be either scramble, contest, or an intermediate between them. Individuals of two species are distributed over resource sites or patches following one of three distribution functions. According to the combination of competition types of the two species and the distribution of individuals, various interspecific competition models are derived. Furthermore, a general interspecific competition model that includes various competition models as special cases is derived for each distribution of individuals. Finally, this paper examines dynamics of some of the derived competition models and shows that the likelihood of coexistence of the two species varies greatly, depending on the type of spatial distribution of individuals.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.