Revising the Role of Species Mobility in Maintaining Biodiversity in Communities with Cyclic Competition
详细信息    查看全文
  • 作者:M. W. Adamson (1)
    A. Y. Morozov (1) am379@le.ac.uk
  • 关键词:Co ; invasion &#8211 ; Complexity &#8211 ; Dispersal rate &#8211 ; Excitable system &#8211 ; Homogeneous environment &#8211 ; Patterns of spread &#8211 ; Spatial ecology &#8211 ; Spatiotemporal chaos &#8211 ; Spiral waves
  • 刊名:Bulletin of Mathematical Biology
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:74
  • 期:9
  • 页码:2004-2031
  • 全文大小:1.4 MB
  • 参考文献:1. Alzahrani, E. O., Davidson, F. A., & Dodds, N. (2010). Travelling waves in near-degenerate bistable competition models. Math. Model. Nat. Phenom., 5(5), 13–35.
    2. Alzahrani, E. O., Davidson, F. A., & Dodds, N. (2011). Reversing invasion in bistable systems. J. Math. Biol. doi:
    3. Amarasekare, P. (2003). Competitive coexistence in spatially structured environments: A synthesis. Ecol. Lett., 6, 1109–1122.
    4. Boerlijst, M. C., & Hogeweg, P. (1995). Spatial gradients enhance persistence of hypercycles. Physica D, 88, 29–39.
    5. Boerlijst, M. C., Lamers, M. E., & Hogeweg, P. (1993). Evolutionary consequences of spiral waves in a host–parasitoid system. Proc. R. Soc. Lond. B, 253, 15–18.
    6. Buss, L. W., & Jackson, J. B. (1979). Competitive networks: Nontransitive competitive relationships in cryptic coral reef environments. Am. Nat., 113, 223–234.
    7. Cameron, D. D., White, A., & Antonovics, J. (2009). Parasite-grass-forb interactions and rock-paper-scissor dynamics: Predicting the effects of the parasitic plant Rhinanthus minor on host plant communities. J. Ecol., 97, 1311–1319.
    8. Cantrell, R. S., & Cosner, C. (2003). Spatial ecology via reaction-diffusion equations. Chichester: Wiley.
    9. Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst., 31, 342–366.
    10. Crosby, A. W. (1986). Ecological imperialism. The biological expansion of Europe, 900–1900. Cambridge: Cambridge University Press.
    11. Davis, M. B., Calcote, R. R., Sugita, S., & Takahara, H. (1998). Patchy invasion and the origin of a hemlock-hardwoods forest mosaic. Ecology, 79, 2641–2659.
    12. Ducharme, M. B., Larochelle, J., & Richard, D. (1989). Thermogenic capacity in gray and black morphs of the gray squirrel, Sciurus Carolinensis. Physiol. Zool., 62, 1273–1292.
    13. Durrett, R., & Levin, S. (1998). Spatial aspects of interspecific competition. Theor. Popul. Biol., 53, 30–43.
    14. Frachebourg, L., Krapivsky, P. L., & Ben-Naim, E. (1996). Spatial organization in cyclic Lotka–Volterra systems. Phys. Rev. E, 54, 6186–6200.
    15. Frean, M., & Abraham, R. (2001). Rock-scissors-paper and the survival of the weakest. Proc. R. Soc. Lond. B, 268, 1323–1327.
    16. Gause, G. F. (1934). The struggle for existence. New York: Hafner Publishing Company.
    17. Gilpin, M. E. (1975). Limit cycles in competition communities. Am. Nat., 109, 51–60.
    18. Gurney, W. S. C., Veitch, A. R., Cruickshank, I., & McGeachin, G. (1998). Circles and spirals: Population persistence in a spatially explicit predator–prey model. Ecology, 79, 2516–2530.
    19. Hanski, I. (1994). Spatial scale, patchiness and population dynamics on land. Philos. Trans. R. Soc. Lond. B, 343, 19–25.
    20. Hardin, G. (1960). The competitive exclusion principle. Science, 131, 1292–1298.
    21. Hauert, C., De Monte, S., Hofbauer, J., & Sigmund, K. (2002). Replicator dynamics for optional public good games. J. Theor. Biol., 218, 187–194.
    22. Hosono, Y. (1998). The minimal speed of traveling fronts for a diffusive Lotka–Volterra competition model. Bull. Math. Biol., 60, 435–448.
    23. Huisman, J., Johansson, A. M., Folmer, E. O., & Weissing, F. J. (2001). Towards a solution of the plankton paradox: The importance of physiology and life history. Ecol. Lett., 4, 408–411.
    24. Hutchinson, G. E. (1961). The paradox of the plankton. Am. Nat., 95, 137–145.
    25. Ikeda, H. (2001). Multiple travelling wave solutions of three-component systems with competition and diffusion. Methods Appl. Anal., 8(3), 479–496.
    26. Ives, A. R., & Carpenter, S. R. (2007). Stability and diversity of ecosystems. Science, 317, 58.
    27. Jackson, J. B. C., & Buss, L. W. (1975). Allelopathy and spatial competition among coral reef invertebrates. Proc. Natl. Acad. Sci. USA, 72, 5160–5163.
    28. Jiang, L., Zhou, T., Perc, M., & Wang, B. (2011). Effects of competition on pattern formation in the rock-paper-scissors game. Phys. Rev. E, 84, 021912.
    29. K谩rolyi, G., Neufeld, Z., & Scheuring, I. (2005). Rock-scissors-paper game in a chaotic flow: The effect of dispersion on the cyclic competition of microorganisms. J. Theor. Biol., 236, 12–20.
    30. Kerr, B., Riley, M. A., Feldman, M. W., & Bohannan, J. M. (2002). Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors. Nature, 418, 171–174.
    31. Kim, P.J., Jeong, H. (2005). Spatio-temporal dynamics in the origin of genetic information. Physica D, 203, 88–99.
    32. Kirkup, B. C., & Riley, M. A. (2004). Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature, 428, 412–414.
    33. Kolb, A., & Alpert, P. (2003). Effects of nitrogen and salinity on growth and competition between a native grass and an invasive congener. Biol. Invasions, 5, 229–238.
    34. Laird, R. A., & Schamp, B. S. (2008). Does local competition increase the coexistence of species in intransitive networks? Ecology, 89, 237–247.
    35. Levin, P. S., Coyer, J. A., Petrik, R., & Good, T. P. (2002). Community-wide effects of nonindigenous species on temperate rocky reefs. Ecology, 83, 3182–3193.
    36. Levine, J. M., & Hille Ris Lambers, J. (2010). The importance of niches for the maintenance of species diversity. Nature, 461, 254–257.
    37. Lewis, M. A. (2000). Spread rate for a nonlinear stochastic invasion. J. Math. Biol., 41, 430–454.
    38. Lewis, M. A., & Pacala, S. (2000). Modeling and analysis of stochastic invasion processes. J. Math. Biol., 41, 387–429.
    39. Lewis, M., Li, B., & Weinberger, H. F. (2002). Spreading speed and linear determinacy for two-species competition models. J. Math. Biol., 45, 219–233.
    40. MacArthur, R., & Levins, R. (1967). The limiting similarity, convergence, and divergence of coexisting species. Am. Nat., 101(921), 377–385.
    41. May, R. M., & Leonard, W. J. (1975). Nonlinear aspects of competition between three species. SIAM J. Appl. Math., 29, 243–253.
    42. Merino, S. (1996). Cyclic competition of three species in the time periodic and diffusive case. J. Math. Biol., 34, 789–809.
    43. Metz, J. A. J., Nisbet, R. M., & Geritz, S. A. H. (1992). How should we define fitness for general ecological scenarios. Trends Ecol. Evol., 7, 198–202.
    44. Moen, J. (1989). Diffuse competition: A diffuse concept. Oikos, 54, 260–263.
    45. Morozov, A.Yu., & Li, B.-L. (2007). On the importance of dimensionality of space in models of space-mediated population persistence. Theor. Popul. Biol., 71, 278–289.
    46. Morozov, A. Yu., Petrovskii, S. V., & Li, B. (2006). Spatiotemporal complexity of the patchy invasion in a predator–prey system with the Allee effect. J. Theor. Biol., 238, 18–35.
    47. M眉ller, A. P. O., & Gallas, J. A. C. (2010). How community size affects survival chances in cyclic competition games that microorganisms play. Phys. Rev. E, 82, 052901.
    48. Murray, J.D. (1989). Mathematical biology. Berlin: Springer.
    49. Ni, X., Yang, R., Wang, W.-X., Lai, Y.-C., & Grebogi, C. (2010). Cyclic competition of mobile species on continuous space: pattern formation and coexistence. Phys. Rev. E, 82, 066211.
    50. O’Dowd, D. J., Green, P. T., & Lake, P. S. (2003). Invasional ‘meltdown’ on an oceanic island. Ecol. Lett., 6, 812–817.
    51. Okubo, A., Maini, P., Williamson, M. H., & Murray, J. D. (1989). On the spatial spread of the grey squirrel in Britain. Proc. R. Soc. Lond. B, 238, 113–125.
    52. Paquin, C. E., & Adams, J. (1983). Relative fitness can decrease in evolving asexual populations of S. cerevisiae. Nature, 306, 368–371.
    53. Petrovskii, S. V., Kawasaki, K., Takasu, F., & Shigesada, N. (2001). Diffusive waves, dynamical stabilization and spatiotemporal chaos in a community of three competitive species. Jpn. J. Ind. Appl. Math., 18, 459–481.
    54. Petrovskii, S. V., Morozov, A. Y., & Venturino, E. (2002). Allee effect makes possible patchy invasion in a predator–prey system. Ecol. Lett., 5, 345–352.
    55. Prado, F., & Kerr, B. (2008). The evolution of restraint in bacterial biofilms under nontransitive competition. Evolution, 62, 538–548.
    56. Reichenbach, T., Mobilia, M., & Frey, E. (2007). Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games. Nature, 448, 1046–1049.
    57. Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J., & Rejmanek, M. (2000). Plant invasions—the role of mutualisms. Biol. Rev., 75, 65–93.
    58. Rohani, P., Lewis, T. J., Gr眉nbaum, D., & Ruxton, G. D. (1997). Spatial self-organization in ecology: Pretty patterns or robust reality? Trends Evol. Ecol., 12(2), 70–74.
    59. Roy, S., & Chattopadhyay, J. (2007). Towards a resolution of ‘the paradox of the plankton’: A brief overview of the proposed mechanisms. Ecol. Complex., 4, 26–33.
    60. Rushton, S. P., Lurz, P., Gurnell, J., & Fuller, R. (2000). Modelling the spatial dynamics of parapoxvirus disease in red and grey squirrels: A possible cause of the decline in the red squirrel in the UK? J. Appl. Ecol., 37, 997–1012.
    61. Ryabov, A. B., & Blasius, B. (2011). A graphical theory of competition on spatial resource gradients. Ecol. Lett., 14, 220–228.
    62. Scheffer, M., Rinaldi, S., Huisman, J., & Weissing, F. J. (2003). Why plankton communities have no equilibrium: Solutions to the paradox. Hydrobiologia, 491, 9–18.
    63. Sherratt, J. (2001). Periodic travelling waves in cyclic predator–prey systems. Ecol. Lett., 4, 30–37.
    64. Sherratt, J., & Smith, M. (2008). Periodic travelling waves in cyclic populations: Field studies and reaction–diffusion models. J. R. Soc. Interface, 6, 483–505.
    65. Shigesada, N., & Kawasaki, K. (1997). Biological invasions: Theory and practice. Oxford: Oxford University Press.
    66. Silvertown, J., Holtier, S., Johnson, J., & Dale, P. (1992). Cellular automaton models of interspecific competition for space—The effect of pattern on process. J. Ecol., 80, 527–534.
    67. Simberloff, D. (2006). Invasional meltdown 6 years later: Important phenomenon, unfortunate metaphor, or both? Ecol. Lett., 9, 912–919.
    68. Simberloff, D., & Von Holle, B. (1999). Positive interactions of nonindigenous species: Invasional meltdown? Biol. Invasions, 5, 179–192.
    69. Sinervo, B., & Lively, C. M. (1996). The rock-paper-scissors game and the evolution of alternative male strategies. Nature, 380, 240–243.
    70. Szab贸, G. (2002). Evolutionary prisoner’s dilemma games with voluntary participation. Phys. Rev. E, 66, 062903.
    71. Tainaka, K. (1993). Paradoxical effect in a three-candidate voter model. Phys. Lett. A, 176, 303–306.
    72. Tanner, J. E., Hughes, T. P., & Connell, J. H. (1994). Species coexistence, keystone species, and succession: A sensitivity analysis. Ecology, 75, 2204–2219.
    73. Thomas, J. (1995). Texts in applied mathematics: Vol. 22. Numerical partial differential equations: finite difference methods. New York: Springer.
    74. Tilman, D. (1982). Resource competition and community structure. Princeton: Princeton University Press.
    75. Tilman, D., May, R. M., Lehman, C. L., & Nowak, M. A. (1994). Habitat destruction and the extinction debt. Nature, 371, 65–66.
    76. Tompkins, D. M., White, A. R., & Boots, M. (2003). Ecological replacement of native red squirrels by invasive greys driven by disease. Ecol. Lett., 6, 189–196.
    77. With, K. A. (2001). The landscape ecology of invasive spread. Conserv. Biol., 16, 1192–1203.
    78. Wonham, M. J., O’Connor, M., & Harley, C. D. G. (2005). Positive effects of a dominant invader on introduced and native mudflat species. Mar. Ecol. Prog. Ser., 289, 109–116.
  • 作者单位:1. Department of Mathematics, University of Leicester, Leicester, UK
  • ISSN:1522-9602
文摘
One of the most crucial tasks faced by biologists today is revealing the mechanisms which account for biodiversity, yet we are still far from a full understanding of these mechanisms, and in particular the role of spatially heterogeneous population distributions. Recently, the spatially heterogeneous coexistence seen in cyclic competition models—in which species compete as in the game rock-paper-scissors—has brought them to the fore as a paradigm for biodiversity. Research into cyclic competition has so far been focused almost exclusively on stochastic lattice models with discrete space, which ignore several key dynamical aspects. In particular, such models usually assume that species disperse at the same speed. This paper aims to extend our understanding of cyclic competition by applying a reaction–diffusion Lotka–Volterra scheme to the problem, which allows us to vary the mobility of each species, and lets us take into account cyclic competition with more complex underlying mechanisms. In this paper we reveal an entirely new kind of cyclic competition—‘conditional’ cyclic competition, with a different underlying mechanism to ‘classic’ cyclic competition—and we show that biodiversity in communities with cyclic competition in fact depends heavily on the ratios between the species mobilities. Furthermore, we show that this dependence can be completely different for conditional and classic cyclic competition. We also present a wide range of spatiotemporal patterns which are formed in the system, including spiral and target waves, spiralling patches, and irregular chaotic patches. We show that the previously unknown case of conditional cyclic competition is host to a scenario of patchy co-invasion, where the spread of the population front takes place via the formation, splitting and propagation of patches of high species density. This is also an example of invasional meltdown because one competitor facilitates the invasion of the other, but unlike well-known cases of invasional meltdown the co-invaders in this system are not mutualists but antagonistic competitors, and the overall result mitigates, rather than amplifies, the damage done to the native ecosystem.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.