Dielectric relaxation and conduction mechanisms in sprayed TiO2 thin films as a function of the annealing temperature
详细信息    查看全文
  • 作者:Albert Juma ; Ilona Oja Acik ; Arvo Mere ; Malle Krunks
  • 刊名:Applied Physics A: Materials Science & Processing
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:122
  • 期:4
  • 全文大小:1,271 KB
  • 参考文献:1.G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)ADS CrossRef
    2.B. Pedro, M. Rodrigo, P. Lui, F. Elvira, Transparent Oxide Electronics: From Materials to Devices (Wiley, Chichester, 2012)
    3.M.C. Sekhar, P. Kondaiah, G.M. Rao, S.V.J. Chandra, S. Uthanna, Superlattices Microstruct. 62, 68 (2013)ADS CrossRef
    4.R. Sing, R. Paily, A. DasGupta, N. DasGupta, P. Misra, L.M. Kukreja, Semicond. Sci. Technol. 20, 38 (2005)ADS CrossRef
    5.W. Yang, J. Marino, A. Monson, C.A. Wolden, Semicond. Sci. Technol. 21, 1573 (2006)ADS CrossRef
    6.L.H. Chong, K. Mallik, C.H. de Groot, R. Kersting, J. Phys.: Condens. Matter 18, 645 (2006)ADS
    7.H. Xue, W. Chen, C. Liu, X. Kong, P. Qu, Z. Liu, J. Zhou, L. Shen, Z. Zhong, S. Ruan, in Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems Sanya, China 108 (2008)
    8.J.C. Tinoco, M. Estrada, B. In˜iguez, A. Cerdeira, Microelectron. Reliab. 48, 370 (2008)CrossRef
    9.P. Walke, R. Bouregba, A. Lefevre, G. Parat, F. Lallemand, F. Voiron, B. Mercey, U. Lüders, J. Appl. Phys. 115, 094103 (2014)ADS CrossRef
    10.M.-K. Lee, J.-J. Huang, T.-S. Wu, Semicond. Sci. Technol. 20, 519 (2005)ADS CrossRef
    11.S. Chakraborty, M.K. Bera, S. Bhattacharya, C.K. Maiti, Current conduction mechanism in TiO2 gate dielectrics. Microelectron. Eng. 81, 188 (2005)CrossRef
    12.S. Aksoy, Y. Caglar, J. Alloys Compd. 613, 330 (2014)CrossRef
    13.A. Bengi, U. Aydemir, S. Altındal, Y. Ozen, S. Ozcelik, J. Alloys Compd. 505, 628 (2010)CrossRef
    14.D. Mardare, G.I. Rusu, J. Non Cryst. Solids 356, 1395 (2010)ADS CrossRef
    15.S. Kim, H.Y. Jeong, S.-Y. Choi, Y.-K. Choi, Appl. Phys. Lett. 97, 033508 (2010)ADS CrossRef
    16.L.-E. Yu, S. Kim, M.-K. Ryu, S.-Y. Choi, Y.-K. Choi, IEEE 29, 331 (2008)
    17.P.H. Wöbkenberg, T. Ishwara, J. Nelson, D.D.C. Bradley, S.A. Haque, T.D. Anthopoulos, Appl. Phys. Lett. 96, 082116 (2010)ADS CrossRef
    18.J.B. Naceur, M. Gaidi, F. Bousbih, R. Mechiakh, R. Chtourou, Curr. Appl. Phys. 12, 422 (2012)ADS CrossRef
    19.M. Es-Souni, I. Oja, M. Krunks, J. Mater. Sci.: Mater. Electron. 15, 341 (2004)
    20.N.R. Mathews, E.R. Morales, M.A. Corte´s-Jacome, J.A.T. Antonio, Sol. Energy 83, 1499 (2009)ADS CrossRef
    21.C.H. Chen, E.M. Kelder, J. Schoonman, Thin Solid Films 342, 35 (1999)ADS CrossRef
    22.K. Otto, A. Katerski, A. Mere, O. Volobujeva, M. Krunks, Thin Solid Films 519, 3055 (2011)ADS CrossRef
    23.A. O. Juma, I. Oja Acik, V. Mikli, A. Mere, M. Krunks, in Thin Solid Films (2015) in press
    24.A. Oja, M. Mere, C.-H. Krunks, M. Solterbeck, Es-Souni. Solid State Phenom. 99–100, 259 (2004)CrossRef
    25.Y. Cui, J. Sun, Z. Hu, W. Yu, N. Xu, N. Xu, Z. Ying, J. Wu, Surf. Coat. Technol. 231, 180 (2013)CrossRef
    26.N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, Thin Solid Films 300, 113 (1997)ADS CrossRef
    27.E. Barsoukov, J.R. McDonald, Impedance Spectroscopy, Theory: Experiments and Applications (Wiley, Hoboken, NJ, 2005)CrossRef
    28.J.Y. Kim, H.S. Jung, J.H. No, J.-R. Kim, K.S. Hong, J. Electroceramics 16, 447 (2006)CrossRef
    29.G.A. Kontos, A.L. Soulintzis, P.K. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras, M.N. Pisanias, Express Polym. Lett. 1, 781 (2007)CrossRef
    30.K. Vydianathan, G. Nuesca, G. Peterson, E.T. Eisenbraun, A.E. Kaloyeros, J.J. Sullivan, B. Han, J. Mater. Res. 16, 1838 (2001)ADS CrossRef
    31.R.A. Parker, J.S. Wasilik, Phys. Rev. 120, 1631 (1960)ADS CrossRef
    32.J.K. Jonscher, J. Phys. D Appl. Phys. 32, R57 (1999)ADS CrossRef
    33.K. Funke, R.D. Banhatti, Solid State Sci. 10, 790–803 (2008)ADS CrossRef
    34.A.A.A. Youssef, Z. Naturforsch. 57a, 263–269 (2002)ADS
    35.C. Cramer, K. Funke, T. Saatkamp, D. Wilmer, M.D. Ingram, Z. Naturforsch. 50a, 613–623 (1995)ADS
    36.S.C. Sun, T.F. Chen,   IEDM '94. Technical Digest: International Electron Devices Meeting, 1994 (IEEE, San Francisco, CA, 1994), pp. 333–336
    37.F.-C. Chiu, Adv. Mater. Sci. Eng. 2014, ID 578168 (2014)
    38.F.-C. Chiu, H.-W. Chou, J.Y.-M. Lee, J. Appl. Phys. 97, 103503 (2005)ADS CrossRef
    39.M.A. Lampert, P. Mark, Current Injection in Solids (Academic press, NY, 1970)
  • 作者单位:Albert Juma (1) (2)
    Ilona Oja Acik (1)
    Arvo Mere (1)
    Malle Krunks (1)

    1. Laboratory of Thin Film Chemical Technologies, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia
    2. Department of Physics and Astronomy, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Condensed Matter
    Optical and Electronic Materials
    Nanotechnology
    Characterization and Evaluation Materials
    Surfaces and Interfaces and Thin Films
    Operating Procedures and Materials Treatment
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0630
文摘
The electrical properties of TiO2 thin films deposited by chemical spray pyrolysis onto Si substrates were investigated in the metal–oxide–semiconductor (MOS) configuration using current–voltage characteristics and impedance spectroscopy. The electrical properties were analyzed in relation to the changes in microstructure induced during annealing in air up to a temperature of 950 °C. Anatase to rutile transformation started after annealing at 800 °C, and at 950 °C, only the rutile phase was present. The dielectric relaxation strongly depended upon the microstructure of TiO2 with the dielectric constant for the anatase phase between 45 and 50 and that for the rutile phase 123. Leakage current was reduced by three orders of magnitude after annealing at 700 °C due to the densification of the TiO2 film. A double-logarithmic plot of the current–voltage characteristics showed a linear relationship below 0.12 V consistent with Ohmic conduction, while space-charge-limited conduction mechanism as described by Child’s law dominated for bias voltages above 0.12 V.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.