Structural, Optical and Electrical Characteristics of a La0.5K0.5Ga0.5V0.5O3 System
详细信息    查看全文
  • 作者:Truptimayee Acharya ; R. N. P. Choudhary
  • 关键词:X ; ray diffraction ; infrared spectroscopy ; dielectric properties ; conductivity ; ferroelectricity
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:45
  • 期:2
  • 页码:947-958
  • 全文大小:1,916 KB
  • 参考文献:1.E. Iguchi, Y. Hashimoto, M. Kurumada, and F. Munakata, J. Appl. Phys. 94, 1758 (2003).CrossRef
    2.R.L. Sandstrom, E.A. Giess, W.J. Gallagher, A. Segmüller, E.I. Cooper, M.F. Chisholm, A. Gupta, S. Shinde, and R.B. Laibowitz, Appl. Phys. Lett. 53, 1874 (1988).CrossRef
    3.D.C. Dube, H.J. Scheel, I. Reaney, M. Daglish, and N. Setter, J. Appl. Phys. 75, 4126 (1994).CrossRef
    4.K. Moria, K. Shibata, H. Sagehashi, T. Ishigaki, A. Hoshikawa, S. Harjo, T. Kamiyama, K. Itoh, and T. Fukunaga, Phys. B 350, 1031–1034 (2004).CrossRef
    5.T. Ishihara, H. Matsuda, and Y. Takiya, Solid State Ion. 79, 147 (1995).CrossRef
    6.K. Kurodaa, I. Hashimoto, K. Adachi, J. Akikusa, Y. Tamou, N. Komada, T. Ishihara, and Y. Takita, Solid State Ion. 132, 199–208 (2000).CrossRef
    7.M. Kajitania, M. Matsudaa, A. Hoshikawab, S. Harjob, T. Kamiyamac, T. Ishigakib, F. Izumid, and M. Miyakea, J. Phys. Chem. Solids 68, 758–764 (2007).CrossRef
    8.Raghvendra, R.K. Singh, and P. Singh, AIP Conf. Proc. 1512, 976 (2013). doi:10.​1063/​1.​4791368 .CrossRef
    9.C. Zhang, C.-J. Li, G. Zhang, X.-J. Ning, C.-X. Li, H. Liao, and C. Coddet, Mater. Sci. Eng., B 137, 24–30 (2007).CrossRef
    10.POWDMULT, An Interactive powder diffraction data interpretation and indexing program Version 2.1, E. Wu, School of Physical Sciences, Flinders University of South Australia, Bradford Park.
    11.H.P. Klung and L.B. Alexander, X-ray Diffraction Procedure (New York: Wiley, 1974), pp. 687–689.
    12.K. Sambasiva Rao, B. Tilak, K. Ch. Varada Rajulu, A. Swathi, and H. Workineh, J. Alloy. Compd. 509, 7121–7129 (2011).
    13.P. Petkov, D. Tsiulyanu, W. Kulisch, and C. Popov, Nanoscience Advances in CBRN Agents Detection, Information and Energy Security, ed.. by P. Petkov, D. Tsiulyanu, W. Kulisch, and C. Popov (Springer, 2015)
    14.L.M. El Nadi, Modern Trends in Physics Research—Third International Conference on Modern, Egypt, 6–10 April 2008.
    15.J. Yang, Y. Zhao, and R.L. Frost, Spectrochim. Acta Part A 74, 398–403 (2009).CrossRef
    16.A.C. Tas, P.J. Majewski, and F. Aldinger, J. Am. Ceram. Soc. 85, 1420 (2002).
    17.S. Mandal, S. Hazra, D. Das, and A. Ghosh, J. Non Cryst. Solids 183, 315–319 (1995).CrossRef
    18.D.L. Wood and J. Tauc, Phys. Rev. B 5, 3144–3152 (1972).CrossRef
    19.V.S. Marques, L.S. Cavalcante, J.C. Sczancoski, E.C. Paris, J.M.C. Teixeira, J.A. Varela, F.S. De Vicente, M.R. Joya, P.S. Pizani, M. SiuLi, M.R.M.C. Santos, and E. Longo, Spectrochim. Acta Part A 74, 1050–1059 (2009).CrossRef
    20.K.E. Babu, N. Murali, K.V. Babu, P.T. Shibeshi, and V. Veeraiah, AIP Conf. Proc. 1620, 173 (2014). doi:10.​1063/​1.​4898236 .CrossRef
    21.A. R´ebola, D.D. Fong, J.A. Eastman, S. O˘g¨ut, and P. Zapol, Phys. Rev. B 87, 245117 (2013).CrossRef
    22.M.J. Weber, Handbook of Optical Materials (Boca Raton: CRC Press, 2003).
    23.C.G. Koops, Phys. Rev. 83, 121–124 (1951).CrossRef
    24.B.N. Parida and P.R. Das, J. Alloys Compd. 585, 234–239 (2014).CrossRef
    25.S. Chandarak, A. Ngamjarurojana, S. Srilomsak, P. Laoratanakul, S. Rujirawat, and R. Yimnirun, Ferroelectrics 410, 75–81 (2011).CrossRef
    26.H. Mahamoud, B. Louati, F. Hlel, and K. Guidara, J. Alloys Compd. 509, 6083–6089 (2011).CrossRef
    27.D.C. Dube, H.J. Scheel, I. Reaney, M. Daglish, and N. Setter, J. Appl. Phys. 75, 4126 (1994). doi:10.​1063/​1.​355993 .CrossRef
    28.T.A. Patil, V.M. Jamadar, and S.H. Chavan, Bull. Mater. Sci. 9, 331–336 (1987).CrossRef
    29.P.R. Das, L. Biswal, B. Behera, and R.N.P. Choudhary, Mater. Res. Bull. 44, 1214 (2009).CrossRef
    30.S.M. Pilgrim, A.E. Sutherland, and S.R. Winzer, J. Am. Ceram. Soc. 73, 3122 (1990).CrossRef
    31.F.A. Kröger and H.J. Vink, Solid State Phys. 3, 307 (1956).
    32.V. Raghavan, Material Science and Engineering (New Delhi: Prentice-Hall of India, 2004).
    33.M. Li, M.J. Pietrowski, R.A. De Souza, H. Zhang, I.M. Reaney, S.N. Cook, J.A. Kilner, and D.C. Sinclair, Nat. Mater. 13, 31–35 (2014).CrossRef
    34.Z.G. Yi, Y.X. Li, Z.Y. Wen, S.R. Wang, J.T. Zeng, and Q.R. Yin, Appl. Phys. Lett. 86, 192906 (2005).CrossRef
    35.B.I. Lazoryak, O.V. Baryshnikova, S. Yu. Stefanovich, A.P. Malakho, V.A. Morozov, A.A. Belik, I.A. Leonidov, O.N. Leonidov, and G. Van Tendelooo, Chem. Mater. 15, 3003–3010 (2003).
    36.D. Ming, J.M. Reau, and J. Ravez, Ferroelectrics 196, 147–150 (1997).CrossRef
    37.V. Andriamampianina, J. Ravez, D. Ming, and J.M. Reau, Ferroelectrics 195, 39–42 (1997).CrossRef
    38.V. Hornebecq, J.-M. Reau, A. Villesuzanne, C. Elissalde, and J. Ravez, J. Mater. Chem. 8, 2423–2428 (1998).CrossRef
    39.M.A.L. Nobre and S. Lanfredi, J. Phys. Chem. Solids 64, 2457 (2003).CrossRef
    40.M. Ram, J. Alloy. Compd. 509, 1744–1748 (2011).CrossRef
    41.J.R. MacDonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems (New York: Wiley, 1987).
    42.T. Acharya and R.N.P. Choudhary, J. Electron. Mater. 44, 271–280 (2015).CrossRef
    43.J.K. Lee, H.W. Park, H.W. Choi, J.E. Kim, S.J. Kim, and Y.S. Yang, J. Korean Phys. Soc. 47, 267–270 (2005).CrossRef
    44.K. Lily, K. Kumari, and R.N.P. Prasad, Choudhary. J. Alloy. Compd. 453, 325–331 (2008).CrossRef
    45.C. Karthik and K.B.R. Varma, J. Phys. Chem. Solids 67, 2437 (2006).CrossRef
    46.E. Venkata Ramana, M.P.F. Graça, M.A. Valente, and T. Bhima Sankaram, J. Alloys Compd. 583, 198–205 (2014).CrossRef
    47.W.D. Kingery, H.K. Browen, and D.R. Ulhman, Introduction to Ceramics (New York: Wiley, 1976), pp. 516–532.
    48.N. Zidi, A. Chaouchi, S. d’Astorg, M. Rguiti, and C. Courtois, J. Alloys Compd. 590, 557–564 (2014).CrossRef
    49.S. Dash, R.N.P. Choudhary, R.D. Piyush, and A. Kumar, Appl. Phys. A 118, 1023–1031 (2015).CrossRef
  • 作者单位:Truptimayee Acharya (1)
    R. N. P. Choudhary (1)

    1. Department of Physics, Institute of Technical Education & Research, Siksha ‘O’ Anusandhan University, Khandagiri, Bhubaneswar, 751030, Odisha, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
The polycrystalline sample of La0.5K0.5Ga0.5V0.5O3 (LKGVO) was prepared using a high-temperature solid-state reaction technique. X-ray structural analysis of the sample confirmed the formation of a single-phase compound in an orthorhombic crystal system. Preliminary molecular structural analysis using infrared (IR) spectroscopy further supports the formation of a single-phase compound. The optical indirect band gaps in LKGVO were obtained from the ultraviolet–visible light (UV–Vis) absorption spectral analysis. The micro-structural study on the LKGVO pellet sample by scanning electron microscopy shows that well-defined grains are distributed uniformly throughout the surface of the sample. Detailed studies of dielectric and impedance parameters as a function of temperature and frequency have shown the significant effect of grains and grain boundaries in the relaxation process. A I–V characteristic of the material shows a negative temperature co-efficient of resistance which is similar to that of a semi-conductor. Based on the appearance of a distinct dielectric anomaly and an unsaturated P–E hysteresis loop, like many other compounds, the existence of ferroelectricity in the compound can be expected in spite of it having moderate ionic conductivity. Keywords X-ray diffraction infrared spectroscopy dielectric properties conductivity ferroelectricity
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.