Dynamics of light bullets in inhomogeneous cubic-quintic-septimal nonlinear media with \({\varvec{{\mathcal {PT}}}}\) -symmetric potentials
详细信息    查看全文
文摘
A (3+1)-dimensional nonlinear Schrödinger equation with variable-coefficient dispersion/diffraction and cubic-quintic-septimal nonlinearities is studied, two families of analytical light bullet solutions with two types of \({{\mathcal {PT}}}\)-symmetric potentials are obtained. The coefficient of the septimal nonlinear term strongly influences the form of light bullet. The direct numerical simulation indicates that light bullet solutions in different cubic-quintic-septimal nonlinear media exhibit different property of stability, and under different \({\mathcal {PT}}\)-symmetric potentials they also show different stability against white noise. These stabilities of evolution originate from subtle interplay among dispersion, diffraction, nonlinearity and \({\mathcal {PT}}\)-symmetric potential. Moreover, compression and expansion of light bullets in the hyperbolic dispersion/diffraction system and periodic modulation system are investigated numerically. The evolution of light bullet in periodic modulation system is more stable than that in the hyperbolic dispersion/diffraction system.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.