Theoretical study on the excited-state π-stacking versus intermolecular hydrogen-transfer processes in the guanine–cytosine/cytosine trimer
详细信息    查看全文
  • 作者:Antonio Francés-Monerris ; Javier Segarra-Martí…
  • 关键词:Quantum chemistry ; Excited states ; CASSCF/CASPT2 ; DNA tautomerisation ; Cyclobutane cytosine dimer ; Hydrogen transfer ; UV light
  • 刊名:Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:135
  • 期:2
  • 全文大小:1,329 KB
  • 参考文献:1.Crespo-Hernández CE, Cohen B, Hare PM, Kohler B (2004) Ultrafast excited-state dynamics in nucleic acids. Chem Rev 104:1977–2019CrossRef
    2.Chen J, Zhang Y, Kohler B (2015) Excited states in DNA strands investigated by ultrafast laser spectroscopy. Top Curr Chem 356:39–87CrossRef
    3.Giussani A, Segarra-Martí J, Roca-Sanjuán D, Merchán M (2015) Excitation of nucleobases from a computational perspective I: reaction paths. Top Curr Chem 355:57–97CrossRef
    4.Lu Y, Lan Z, Thiel W (2015) Computational modeling of photoexcitation in DNA single and double strands. Top Curr Chem 356:89–122CrossRef
    5.Cadet J, Grand A, Douki T (2015) Solar UV Radiation-Induced DNA Bipyrimidine Photoproducts: Formation and Mechanistic Insights. Top Curr Chem 356:249–275CrossRef
    6.Kohler B (2010) Nonradiative decay mechanisms in DNA model systems. J Phys Chem Lett 1:2047–2053CrossRef
    7.Markovitsi D, Gustavsson T, Vayá I (2010) Fluorescence of DNA duplexes: from model helices to natural DNA. J Phys Chem Lett 1:3271–3276CrossRef
    8.Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernández CE, Kohler B (2009) DNA excited-state dynamics: from single bases to the double helix. Annu Rev Phys Chem 60:217–239CrossRef
    9.Merchán M, Serrano-Andrés L (2008) Photostability and photoreactivity in biomolecules: quantum chemistry of nucleic acid base monomers and dimers. In: Leszczynski J, Shukla MK (eds) Radiation induced molecular phenomena in nucleic acids: a comprehensive theoretical and experimental analysis. Springer, The Netherlands
    10.Barbatti M, Aquino AJA, Szymczak JJ, Nachtigallova D, Hobza P, Lischka H (2010) Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases. Proc Natl Acad Sci USA 107:21453–21458CrossRef
    11.Serrano-Andrés L, Merchán M (2009) Are the five natural DNA/RNA base monomers a good choice from natural selection? A photochemical perspective. J Photochem Photobiol C-Photochem Rev 10:21–32CrossRef
    12.Noonan FP, Zaidi MR, Wolnicka-Glubisz A, Anver MR, Bahn J, Wielgus A, Cadet J, Douki T, Mouret S, Tucker MA, Popratiloff A, Merlino G, De Fabo EC (2012) Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nat Commun 3:884CrossRef
    13.Cadet J, Mouret S, Ravanat JL, Douki T (2012) Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem Photobiol 88:1048–1065CrossRef
    14.Rak J, Chomicz L, Wiczk J, Westphal K, Zdrowowicz M, Wityk P, Żyndul M, Makurat S, Golon Ł (2015) Mechanisms of damage to DNA labeled with electrophilic nucleobases induced by ionizing or UV radiation. J Phys Chem B 119:8227–8238CrossRef
    15.Rak J, Kobyłecka M, Storoniak P (2011) Single strand break in DNA coupled to the O-P bond cleavage a computational study. J Phys Chem B 115:1911–1917CrossRef
    16.Canuel C, Mons M, Piuzzi F, Tardivel B, Dimicoli I, Elhanine M (2005) Excited states dynamics of DNA and RNA bases: Characterization of a stepwise deactivation pathway in the gas phase. J Chem Phys 122:074316CrossRef
    17.Quinn S, Doorley GW, Watson GW, Cowan AJ, George MW, Parker AW, Ronayne KL, Towrie M, Kelly JM (2007) Ultrafast IR spectroscopy of the short-lived transients formed by UV excitation of cytosine derivatives. Chem Commun 21:2130–2132CrossRef
    18.Hare PM, Crespo-Hernández CE, Kohler B (2007) Internal conversion to the electronic ground state occurs via two distinct pathways for pyrimidine bases in aqueous solution. Proc Natl Acad Sci USA 104:435–440CrossRef
    19.Hare PM, Middleton CT, Mertel KI, Herbert JM, Kohler B (2008) Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine. Chem Phys 347:383–392CrossRef
    20.Serrano-Andrés L, Merchán M, Borin AC (2006) Adenine and 2-aminopurine: paradigms of modern theoretical photochemistry. Proc Natl Acad Sci USA 103:8691–8696CrossRef
    21.Serrano-Andrés L, Merchán M, Borin AC (2008) A three-state model for the photophysics of guanine. J Am Chem Soc 130:2473–2484CrossRef
    22.Merchán M, González-Luque R, Climent T, Serrano-Andrés L, Rodriguez E, Reguero M, Peláez D (2006) Unified model for the ultrafast decay of pyrimidine nucleobases. J Phys Chem B 110:26471–26476CrossRef
    23.Improta R, Barone V (2015) Excited states behavior of nucleobases in solution: insights from computational studies. In: Borin AC, Ullrich S (eds) Barbatti M. Springer International Publishing, Photoinduced phenomena in nucleic acids I
    24.Ismail N, Blancafort L, Olivucci M, Kohler B, Robb MA (2002) Ultrafast decay of electronically excited singlet cytosine via π, π* to nO, π* state switch. J Am Chem Soc 124:6818–6819CrossRef
    25.Asturiol D, Lasorne B, Worth GA, Robb MA, Blancafort L (2010) Exploring the sloped-to-peaked S2/S1 seam of intersection of thymine with electronic structure and direct quantum dynamics calculations. Phys Chem Chem Phys 12:4949–4958CrossRef
    26.Szymczak JJ, Barbatti M, Hoo JTS, Adkins JA, Windus TL, Nachtigallova D, Lischka H (2009) Photodynamics simulations of thymine: relaxation into the first excited singlet state. J Phys Chem A 113:12686–12693CrossRef
    27.Asturiol D, Lasorne B, Robb MA, Blancafort L (2009) Photophysics of the ππ* and nπ* States of Thymine: mS-CASPT2 Minimum-Energy Paths and CASSCF on-the-Fly Dynamics. J Phys Chem A 113:10211–10218CrossRef
    28.González-Luque R, Climent T, González-Ramírez I, Merchán M, Serrano-Andrés L (2010) Singlet-triplet states interaction regions in DNA/RNA nucleobase hypersurfaces. J Chem Theor Comput 6:2103–2114CrossRef
    29.Martínez-Fernández L, Gónzalez L, Corral I (2012) An ab initio mechanism for efficient population of triplet states in cytotoxic sulfur substituted DNA bases: the case of 6-thioguanine. Chem Commun 48:2134–2136CrossRef
    30.Takaya T, Su C, de La Harpe K, Crespo-Hernández CE, Kohler B (2008) UV excitation of single DNA and RNA strands produces high yields of exciplex states between two stacked bases. Proc Natl Acad Sci USA 105:10285–10290CrossRef
    31.Chen J, Kohler B (2014) Base stacking in adenosine dimers revealed by femtosecond transient absorption spectroscopy. J Am Chem Soc 136:6362–6372CrossRef
    32.Bucher DB, Pilles BM, Carell T, Zinth W (2014) Charge separation and charge delocalization identified in long-living states of photoexcited DNA. Proc Natl Acad Sci USA 111:4369–4374CrossRef
    33.Chen J, Thazhathveetil AK, Lewis FD, Kohler B (2013) Ultrafast excited-state dynamics in hexaethyleneglycol-linked DNA homoduplexes made of A·T base pairs. J Am Chem Soc 135:10290–10293CrossRef
    34.Vayá I, Gustavsson T, Douki T, Berlin Y, Markovitsi D (2012) Electronic excitation energy transfer between nucleobases of natural DNA. J Am Chem Soc 134:11366–11368CrossRef
    35.Bucher DB, Schlueter A, Carell T, Zinth W (2014) Watson-Crick base pairing controls excited-state decay in natural DNA. Angew Chem Int Ed 53:11366–11369CrossRef
    36.Sinha RP, Hader D-P (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236CrossRef
    37.Giussani A, Serrano-Andrés L, Merchán M, Roca-Sanjuán D, Garavelli M (2013) Photoinduced formation mechanism of the Thymine-Thymine (6–4) adduct. J Phys Chem B 117:1999–2004CrossRef
    38.Buchvarov I, Wang Q, Raytchev M, Trifonov A, Fiebig T (2007) Electronic energy delocalization and dissipation in single- and double-stranded DNA. Proc Natl Acad Sci USA 104:4794–4797CrossRef
    39.Olaso-González G, Merchán M, Serrano-Andrés L (2009) The role of adenine excimers in the photophysics of oligonucleotides. J Am Chem Soc 131:4368–4377CrossRef
    40.Huix-Rotllant M, Brazard J, Improta R, Burghardt I, Markovitsi D (2015) Stabilization of mixed Frenkel-charge transfer excitons extended across both strands of Guanine–Cytosine DNA duplexes. J Phys Chem Lett 6:2247–2251CrossRef
    41.Spata VA, Matsika S (2014) Role of excitonic coupling and charge-transfer states in the absorption and CD spectra of Adenine-based oligonucleotides investigated through QM/MM simulations. J Phys Chem A 118:12021–12030CrossRef
    42.Conti I, Altoe P, Stenta M, Garavelli M, Orlandi G (2010) Adenine deactivation in DNA resolved at the CASPT2//CASSCF/AMBER level. Phys Chem Chem Phys 12:5016–5023CrossRef
    43.Conti I, Nenov A, Hofinger S, Flavio Altavilla S, Rivalta I, Dumont E, Orlandi G, Garavelli M (2015) Excited state evolution of DNA stacked adenines resolved at the CASPT2//CASSCF/Amber level: from the bright to the excimer state and back. Phys Chem Chem Phys 17:7291–7302CrossRef
    44.Nachtigallová D, Zelený T, Ruckenbauer M, Müller T, Barbatti M, Hobza P, Lischka H (2010) Does stacking restrain the photodynamics of individual nucleobases? J Am Chem Soc 132:8261–8263CrossRef
    45.Aquino AJ, Nachtigallova D, Hobza P, Truhlar DG, Hättig C, Lischka H (2011) The charge-transfer states in a stacked nucleobase dimer complex: a benchmark study. J Comput Chem 32:1217–1227CrossRef
    46.Plasser F, Aquino AJ, Lischka H, Nachtigallová D (2014) Electronic excitation processes in single-strand and double-strand DNA: a computational approach. Top Curr Chem 356:1–37CrossRef
    47.Plasser F, Aquino AJ, Hase WL, Lischka H (2012) UV absorption spectrum of alternating DNA duplexes analysis of excitonic and charge transfer interactions. J Phys Chem A 116:11151–11160CrossRef
    48.Szalay PG, Watson T, Perera A, Lotrich V, Bartlett RJ (2013) Benchmark studies on the building blocks of DNA. 3. Watson-Crick and stacked base pairs. J Phys Chem A 117:3149–3157CrossRef
    49.Roca-Sanjuán D, Olaso-González G, González-Ramírez I, Serrano-Andrés L, Merchán M (2008) Molecular basis of DNA photodimerization: intrinsic production of cyclobutane cytosine dimers. J Am Chem Soc 130:10768–10779CrossRef
    50.Boggio-Pasqua M, Groenhof G, Schäfer LV, Grubmüller H, Robb MA (2007) Ultrafast deactivation channel for thymine dimerization. J Am Chem Soc 129:10996–10997CrossRef
    51.Climent T, González-Ramírez I, González-Luque R, Merchán M, Serrano-Andrés L (2010) Cyclobutane pyrimidine photodimerization of DNA/RNA nucleobases in the triplet state. J Phys Chem Lett 1:2072–2076CrossRef
    52.González-Ramírez I, Roca-Sanjuán D, Climent T, Serrano-Pérez JJ, Merchán M, Serrano-Andrés L (2011) On the photoproduction of DNA/RNA cyclobutane pyrimidine dimers. Theor Chem Acc 128:705–711CrossRef
    53.Sauri V, Gobbo JP, Serrano-Pérez JJ, Lundberg M, Coto PB, Serrano-Andrés L, Borin AC, Lindh R, Merchán M, Roca-Sanjuán D (2012) Proton/Hydrogen Transfer mechanisms in the Guanine–Cytosine base pair: photostability and tautomerism. J Chem Theor Comput 9:481–496CrossRef
    54.Sobolewski AL, Domcke W (2004) Ab initio studies on the photophysics of the Guanine–Cytosine base pair. Phys Chem Chem Phys 6:2763–2771CrossRef
    55.Schwalb NK, Temps F (2008) Base sequence and higher-order structure induce the complex excited-state dynamics in DNA. Science 322:243–245CrossRef
    56.Schwalb NK, Temps F (2007) Ultrafast electronic relaxation in guanosine is promoted by hydrogen bonding with cytidine. J Am Chem Soc 129:9272–9273CrossRef
    57.Ko C, Hammes-Schiffer S (2013) Charge-transfer excited states and proton transfer in model guanine-cytosine DNA duplexes in water. J Phys Chem Lett 4:2540–2545CrossRef
    58.Zhang Y, de La Harpe K, Beckstead AA, Improta R, Kohler B (2015) UV-induced proton transfer between DNA strands. J Am Chem Soc 137:7059–7062CrossRef
    59.Hammes-Schiffer S (2012) Proton-coupled electron transfer: classification scheme and guide to theoretical methods. Energ Environ Sci 5:7696–7703CrossRef
    60.Hammes-Schiffer S (2012) Proton-coupled electron transfer: moving together and charging forward. J Am Chem Soc 137:8860–8871CrossRef
    61.Hammes-Schiffer S, Stuchebrukhov AA (2010) Theory of coupled electron and proton transfer reactions. Chem Rev 110:6939–6960CrossRef
    62.de La Harpe K, Crespo-Hernández CE, Kohler B (2009) Deuterium isotope effect on excited-state dynamics in an alternating GC oligonucleotide. J Am Chem Soc 131:17557–17559CrossRef
    63.Groenhof G, Schäfer LV, Boggio-Pasqua M, Goette M, Grubmüller H, Robb MA (2007) Ultrafast deactivation of an excited Cytosine–Guanine base pair in DNA. J Am Chem Soc 129:6812–6819CrossRef
    64.Starikov EB, Cuniberti G, Tanaka S (2009) Conformation dependence of DNA exciton parentage. J Phys Chem B 113:10428–10435CrossRef
    65.Alexandrova AN, Tully JC, Granucci G (2010) Photochemistry of DNA fragments via semiclassical nonadiabatic dynamics. J Phys Chem B 114:12116–12128CrossRef
    66.Serrano-Andrés L, Merchán M (2005) Quantum chemistry of the excited state: 2005 overview. J Mol Struc-THEOCHEM 729:99–108CrossRef
    67.Roca-Sanjuán D, Aquilante F, Lindh R (2012) Multiconfiguration second-order perturbation theory approach to strong electron correlation in chemistry and photochemistry. WIREs Comput Mol Sci 2:585–603CrossRef
    68.González L, Escudero D, Serrano-Andrés L (2012) Progress and challenges in the calculation of electronic excited states. ChemPhysChem 13:28–51CrossRef
    69.Roca-Sanjuán D, Fdez-Galván I, Lindh R, Ya-Jun L (2015) Recent method developments and applications in computational photochemistry chemiluminescence and bioluminescence. In: Albini A (ed) Photochemistry, vol 42. The Royal Society of Chemistry, London
    70.Serrano-Andrés L, Roca-Sanjuán D, Olaso-González G (2010) Recent trends in computational photochemistry. In: Albini A (ed) Photochemistry, vol 38. The Royal Society of Chemistry, London
    71.Roos BO (1987) The complete active space self-consistent field method and its applications in electronic structure calculations. Adv Chem Phys 69:399–446
    72.Szalay PG, Müller T, Gidofalvi G, Lischka H, Shepard R (2012) Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. Chem Rev 112:108–181CrossRef
    73.Lu XJ, Olson WK (2003) 3DNA: a software package for the analysis rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res 31:5108–5121CrossRef
    74.Andersson K, Malmqvist PÅ, Roos BO (1992) 2nd-order perturbation-theory with a complete active space self-consistent field reference function. J Chem Phys 96:1218–1226CrossRef
    75.Ghigo G, Roos BO, Malmqvist PÅ (2004) A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem Phys Lett 396:142–149CrossRef
    76.Forsberg N, Malmqvist PÅ (1997) Multiconfiguration perturbation theory with imaginary level shift. Chem Phys Lett 274:196–204CrossRef
    77.Boys SF, Bernardi F (2002) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 100:65–73CrossRef
    78.Malmqvist PÅ, Roos BO, Schimmelpfennig B (2002) The restricted active space (RAS) state interaction approach with spin-orbit coupling. Chem Phys Lett 357:230–240CrossRef
    79.Roos BO, Malmqvist PÅ (2004) Relativistic quantum chemistry: the multiconfigurational approach. Phys Chem Chem Phys 6:2919–2927CrossRef
    80.Hess BA, Marian CM, Wahlgren U, Gropen O (1996) A mean-field spin-orbit method applicable to correlated wavefunctions. Chem Phys Lett 251:365–371CrossRef
    81.Christiansen O, Gauss J, Schimmelpfennig B (2000) Spin-orbit coupling constants from coupled-cluster response theory. Phys Chem Chem Phys 2:965–971CrossRef
    82. Aquilante F, De Vico L, Ferré N, Ghigo G, Malmqvist PÅ, Neogrady P, Pedersen TB, Pitonak M, Reiher M, Roos BO, Serrano-Andrés L, Urban M, Veryazov V, Lindh R (2010) Software news and update MOLCAS 7: the next generation. J Comput Chem 31:224–247CrossRef
    83.Aquilante F, Pedersen TB, Veryazov V, Lindh R (2013) MOLCAS-a software for multiconfigurational quantum chemistry calculations. WIREs Comput Mol Sci 3:143–149CrossRef
    84.Sobolewski AL, Domcke W, Hattig C (2005) Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs: the role of electron-driven proton-transfer processes. Proc Natl Acad Sci USA 102:17903–17906CrossRef
    85.Olaso-González G, Roca-Sanjuán D, Serrano-Andrés L, Merchán M (2006) Toward the understanding of DNA fluorescence: the singlet excimer of cytosine. J Chem Phys 125:231102CrossRef
    86.Altavilla SF, Segarra-Martí J, Nenov A, Conti I, Rivalta I, Garavelli M (2015) Deciphering the photochemical mechanisms describing the UV-induced processes occurring in solvated guanine monophosphate. Front Chem 3:29CrossRef
    87.Douki T, Cadet J (2001) Individual determination of the yield of the main UV-induced dimeric pyrimidine photoproducts in DNA suggests a high mutagenicity of CC photolesions. Biochemistry 40:2495–2501CrossRef
    88.Douki T (2013) The variety of UV-induced pyrimidine dimeric photoproducts in DNA as shown by chromatographic quantification methods. Photochem Photobiol Sci 12:1286–1302CrossRef
    89.Kwok W-M, Ma C, Phillips DL (2008) A doorway state leads to photostability or triplet photodamage in thymine DNA. J Am Chem Soc 130:5131–5139CrossRef
    90.Merchán M, Serrano-Andrés L, Robb MA, Blancafort L (2005) Triplet-state formation along the ultrafast decay of excited singlet cytosine. J Am Chem Soc 127:1820–1825CrossRef
    91.Gut IG, Wood PD, Redmond RW (1996) Interaction of triplet photosensitizers with nucleotides and DNA in aqueous solution at room temperature. J Am Chem Soc 118:2366–2373CrossRef
    92.Wood PD, Redmond RW (1996) Triplet state interactions between nucleic acid bases in solution at room temperature: intermolecular energy and electron transfer. J Am Chem Soc 118:4256–4263CrossRef
    93.Bosca F, Lhiaubet-Vallet V, Cuquerella MC, Castell JV, Miranda MA (2006) The triplet energy of thymine in DNA. J Am Chem Soc 128:6318–6319CrossRef
    94.Cadet J, Sage E, Douki T (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res-Fund Mol M 571:3–17CrossRef
    95.Sergentu D-C, Maurice R, Havenith RWA, Broer R, Roca-Sanjuán D (2014) Computational determination of the dominant triplet population mechanism in photoexcited benzophenone. Phys Chem Chem Phys 16:25393–25403CrossRef
    96.Dumont E, Wibowo M, Roca-Sanjuán D, Garavelli M, Assfeld X, Monari A (2015) Resolving the benzophenone DNA-photosensitization mechanism at QM/MM level. J Phys Chem Letters 6:576–580CrossRef
    97.Szabo A, Ostlund NS (1996) Modern quantum chemistry. Dover Publications, New York
    98.West BA, Moran AM (2012) Two-dimensional electronic spectroscopy in the ultraviolet wavelength range. J Phys Chem Lett 3:2575–2581CrossRef
    99.West BA, Womick JM, Moran AM (2013) Interplay between vibrational energy transfer and excited state deactivation in DNA components. J Phys Chem A 117:5865–5874CrossRef
    100.Krause P, Matsika S, Kotur M, Weinacht T (2012) The influence of excited state topology on wavepacket delocalization in the relaxation of photoexcited polyatomic molecules. J Chem Phys 137:22A537CrossRef
    101.Nenov A, Segarra-Martí J, Giussani A, Conti I, Rivalta I, Dumont E, Jaiswal VK, Altavilla SF, Mukamel S, Garavelli M (2015) Probing deactivation pathways of DNA nucleobases by two-dimensional electronic spectroscopy: first principles simulations. Faraday Disc 177:345–362CrossRef
    102.Nenov A, Giussani A, Segarra-Martí J, Jaiswal VK, Rivalta I, Cerullo G, Mukamel S, Garavelli M (2015) Modeling the high-energy electronic state manifold of adenine: calibration for nonlinear electronic spectroscopy. J Chem Phys 142:212443CrossRef
  • 作者单位:Antonio Francés-Monerris (1)
    Javier Segarra-Martí (1) (2)
    Manuela Merchán (1)
    Daniel Roca-Sanjuán (1)

    1. Institut de Ciència Molecular, Universitat de València, P.O. Box 22085, 46071, Valencia, Spain
    2. Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126, Bologna, Italy
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Theoretical and Computational Chemistry
    Inorganic Chemistry
    Organic Chemistry
    Physical Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2234
文摘
Understanding the complex events that take place in nucleic acids upon UV light exposure constitutes a key step in the comprehension of life evolution, as well as in the determination of the mechanisms that can originate genetic mutations and lead to the development of diseases like skin cancer. Over the last decade, intra- and inter-strand processes that depend on the relative movements of the DNA strands have been proposed as photochemical pathways capable to deactivate the excess of energy provided by UV light. In order to elucidate the relative importance of both types of photochemical routes, high-level ab initio quantum chemical computations have been conducted on a model formed by the guanine–cytosine base pair and an additional π-stacked cytosine yielding a GC/C trimeric system. The effect of the π-stacking has been evaluated along the reaction coordinate of the stepwise double-hydrogen-transfer (SDHT) mechanism reported in a previous study (Sauri et al. in J Chem Theory Comput 9: 481–496, 2013). It becomes apparent from the present findings that the SDHT process is available at a wide range of cytosine–cytosine intermolecular distances. At a face-to-face orientation of the two cytosine molecules with an intermolecular distance of 3.4 Å, the highly effective π-stacking interaction favours the formation of the CC excimer of the canonical nucleobases. Nevertheless, no barriers are found for the inter-strand mechanism. At larger interacting distances (4.0 Å), both intra-strand photochemistry and inter-strand photochemistry have to be simultaneously considered, whereas at very short distances (2.8 Å) the SDHT process is significantly hindered. The present work confirms the availability of the intermolecular hydrogen transfer in a wide region of the distinct hypersurfaces explored. As compared to the canonical WC base pair, the tautomeric form has more favourable SDHT channels.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.