Effect of temporal variation rate of cross polar cap potential on the equatorial ionospheric vertical drift: A statistical study
详细信息    查看全文
  • 作者:Wen Xiong (1)
    JiSheng Xu (1) jsxu@whu.edu.cn
    Hui Wang (1)
    Liang Xu (1)
  • 关键词:equatorial ionosphere &#8211 ; temporal variation rate of cross polar cap potential &#8211 ; electric field penetration &#8211 ; ion vertical drift &#8211 ; time delay
  • 刊名:SCIENCE CHINA Technological Sciences
  • 出版年:2012
  • 出版时间:May 2012
  • 年:2012
  • 卷:55
  • 期:5
  • 页码:1217-1223
  • 全文大小:852.4 KB
  • 参考文献:1. Richmond A D, Peymirat C, Roble R G. Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere-ionosphere-thermosphere model. J Geophys Res, 2003, 108(A3): 1118–1129
    2. Nishida A. Coherence of geomagnetic DP2 fluctuation with interplanetary variations. J Geophys Res, 1968, 73(17): 5549–5559
    3. Kelley M C, Makela J J, Chau J L, et al. Penetration of the solar wind electric field into magnetosphere/ionosphere system. Geophys Res Lett, 2003, 30(4): 1158–1160
    4. Gonzales C A, Kelley M C, Carpenter L A, et al. Evidence for a magnetospheric effect on mid-latitude electric fields. J Geophys Res, 1978, 83(A9): 4397–4399
    5. Fejer B G, Kelley M C, Senior C, et al. Low- and mid-latitude ionospheric electric fields during the January 1984 GISMOS Campaign. J Geophys Res, 1990, 95(A3): 2367–2377
    6. Wolf R A, Spiro R W, Sazykin S, et al. How the earth’s inner magnetosphere works: An evolving picture. J Atmos Solar-Terr Phys, 2007, 69(3): 288–302
    7. Schield M A, Freeman J W, Dessler A J. A source for field-aligned currents at auroral latitudes. J Geophys Res, 1969, 74(1): 247–256
    8. Jaggi R K, Wolf R A. Self-consistent calculation of the motion of a sheet of ions in the magnetosphere. J Geophys Res, 1973, 78(16): 2852–2866
    9. Nopper R W, Carovillano R L. Polar-equatorial coupling during magnetically active periods. Geophys Res Lett, 1978, 5(8): 699–702
    10. Vasyliunas V M. The interrelation of magnetospheric processes. In: Proceedings of a Symposium on Earth’s Magnetosphere Processes. Norwell: D. Reidel, 1972. 29–38
    11. Peymirat C, Richmond A D, Kobea A T. Electrodynamic coupling of high and low latitudes: Simulations of shielding/overshielding effects. J Geophys Res, 2000, 105(A10): 22991–23003
    12. Huang C S. Continuous penetration of interplanetary electric field to the equatorial ionosphere over eight hours during intense geomagnetic storms. J Geophys Res, 2008, 113: A11305, doi: 10.1029/2008-JA013588
    13. Rich F J, Hairston M. Large-scale convection patterns observed by DMSP. J Geophys Res, 1994, 99(A3): 3827–3844
    14. Weimer D R. A flexible, IMF dependent model of high-latitude electric potentials having “space weather” applications. Geophys Res Lett, 1996, 23(18): 2549–2552
    15. Ridley A J, Kihn E A. Polar cap index comparisons with AMIE cross polar cap potential, electric field, and polar cap area. Geophys Res Lett, 2004, 31: L07801, doi: 10.1029/2003GL019113
    16. Fejer B G. The equatorial ionospheric electric fields. A review. J Atmos Terr Phys, 1981, 43(5–6): 377–386
    17. Kikuchi T, Hashimoto K K, Tachihara H, et al. Equatorial counterelectrojets during substorms. J Geophys Res, 2003, 108(A11): 1406–1418
    18. Huang C S, Foster J C, Goncharenko L P, et al. Variations of low-latitude geomagnetic fields and Dst index caused by magnetospheric substorms. J Geophys Res, 2004, 109: A05219, doi: 10.1029/2003J-A010334
    19. Blanc M, Richmond A D. The ionospheric disturbance dynamo. J Geophys Res, 1980, 85(A4): 1669–1686
    20. Huang C S, Sazykin S, Chau J L, et al. Penetration electric fields: Efficiency and characteristic time scale. J Atmos Solar-Terr Phys, 2007, 69(10): 1135–1146
    21. Wei Y, Hong M H, Wan W X, et al. A modeling study of interplanetary-equatorial electric field penetration efficiency (in Chinese). Chinese J Geophys, 2008, 51(5): 1279–1284
    22. Khachikjan G Ya, Koustov A V, Sofko G J. Dependence of Super-DARN cross polar cap potential upon the solar wind electric field and magnetopause subsolar distance. J Geophys Res, 2008, 113: A09214, doi: 10.1029/2008JA013107
    23. Russell C T, Luhmann J G, Lu G. Nonlinear response of the polar ionosphere to large values of the interplanetary electric field. J Geophys Res, 2001, 106(A9): 18495–18504
  • 作者单位:1. School of Electronic Information, Wuhan University, Wuhan, 430079 China
  • 刊物类别:Engineering
  • 刊物主题:Chinese Library of Science
    Engineering, general
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1900
文摘
Based on the equatorial vertical ion drift measured by DMSP and cross polar cap potential (φ cpc) from AMIE output during 2001 to 2003, this paper investigates the relationship of φ cpc and its temporal variation rate (Δφ cpc) with the disturbed ion velocity (ΔV x ) which is the difference between the disturbed days (Kp⩾4) and quiet days (Kp<2). The statistical analysis shows: (1) The ΔV x correlates better with Δφ cpc than with ϕ cpc, indicating that the electric field penetration is more easily to occur when solar wind input rapidly varies with time. (2) The optimal delay time of electric field penetration from the high-latitude magnetosphere to equatorial ionosphere has local time dependence which is longer on the nightside than on the dayside. It may be due to more complicated electrodynamic process on the nightside. (3) With the linear relationship between Δϕ cpc and Δϕ V x , it is obtained that the penetration efficiency is about 4.5%&#8211;13.9% at day and 31%&#8211;42% at night, coinciding well with former studies.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.